On the Expressibility of Stochastic Switching Circuits

Hongchao Zhou Jehoshua Bruck

Department of Electrical Engineering
California Institute of Technology

IEEE International Symposium on Information Theory, 2009
Deterministic Switching Circuits

Foundation of modern digital circuit design: Any Boolean functions can be realized by deterministic switching relay circuits.

\[z = x \lor y \]

[C. Shannon, 1938]
Stochastic Switching Circuits

What will happen if we replace deterministic switches with stochastic switches?

Examples

\[P = \frac{1}{4} \]

\[P = 1 - \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} \]
Stochastic Switching Circuits

- Each switch (pswitch) is closed with some probability, chosen from pswitch set S.
- Probability p can be realized if there is a stochastic switching circuit whose two terminals are connected with probability p.
Stochastic Switching Circuits

- Similar to resistor circuits
 - Series:

 \[p = p_1 p_2 \]

 ![Series Circuit Diagram]

- Parallel:

 \[p = 1 - (1 - p_1)(1 - p_2) = p_1 + p_2 - p_1 p_2 \]

 ![Parallel Circuit Diagram]
sp circuits and ssp circuits

- **Series-Parallel (sp) circuit**

 \[
 sp = \begin{cases}
 \text{sp series } sp \\
 \text{sp parallel } sp \\
 \text{pswitch}
 \end{cases}
 \]

- **Simple Series-Parallel (ssp) circuit**

 \[
 ssp = \begin{cases}
 \text{ssp series } \text{pswitch} \\
 \text{ssp parallel } \text{pswitch} \\
 \text{pswitch}
 \end{cases}
 \]
sp circuits and ssp circuits

- **Series-Parallel (sp) circuit**

\[sp = \begin{cases}
 sp \text{ series } sp \\
 sp \text{ parallel } sp \\
 ps\text{witch}
\end{cases} \]

- **Simple Series-Parallel (ssp) circuit**

\[ssp = \begin{cases}
 ssp \text{ series } ps\text{witch} \\
 ssp \text{ parallel } ps\text{witch} \\
 ps\text{witch}
\end{cases} \]
Given pswitch set $S = \left\{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right\}$, only probabilities $\frac{x}{q^n}$ can be realized.

1. Can all $\frac{a}{q^n}$ with $0 < a < q^n$ can be realized by an ssp circuit?
Given pswitch set $S = \left\{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right\}$, only probabilities $\frac{x}{q^n}$ can be realized.

1. Can all $\frac{a}{q^n}$ with $0 < a < q^n$ can be realized by an ssp circuit?

2. How many pswitches are sufficient?
Given pswitch set $S = \{\frac{1}{q}, \frac{2}{q}, ..., \frac{q-1}{q}\}$, only probabilities $\frac{x}{q^n}$ can be realized.

1. Can all $\frac{a}{q^n}$ with $0 < a < q^n$ can be realized by an ssp circuit?
2. How many pswitches are sufficient?
3. How to approximate probabilities?
Wilhelm and Bruck’s Work

<table>
<thead>
<tr>
<th>(q)</th>
<th>all (\frac{a}{q^n}) can be realized?</th>
<th>upper bound of circuit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>yes, ssp circuit</td>
<td>(n)</td>
</tr>
<tr>
<td>3</td>
<td>yes, ssp circuit</td>
<td>(n)</td>
</tr>
<tr>
<td>4</td>
<td>yes, ssp circuit</td>
<td>(2n - 1)</td>
</tr>
</tbody>
</table>
Wilhelm and Bruck’s Work

<table>
<thead>
<tr>
<th>$S = { \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} }$</th>
<th>all $\frac{a}{q^n}$ can be realized?</th>
<th>upper bound of circuit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = 2$</td>
<td>yes, ssp circuit</td>
<td>n</td>
</tr>
<tr>
<td>$q = 3$</td>
<td>yes, ssp circuit</td>
<td>n</td>
</tr>
<tr>
<td>$q = 4$</td>
<td>yes, ssp circuit</td>
<td>$2n - 1$</td>
</tr>
<tr>
<td>$q = 5$</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>$q = 6$</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
We generalized Wilhelm and Bruck’s work for \(q = 2 \) and \(q = 4 \):

\[
S = \left\{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right\}
\]

<table>
<thead>
<tr>
<th>(q) is even</th>
<th>all (\frac{a}{q^n}) can be realized?</th>
<th>upper bound of circuit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes, ssp circuit</td>
<td>(\lceil \log_2 q \rceil(n-1) + 1)</td>
<td></td>
</tr>
</tbody>
</table>
We want to realize $p_0 = \frac{a}{q^n}$:

- Define characteristic function $d\left(\frac{a}{q^n}\right) = \frac{q^{n-1}}{\gcd(a, q^{n-1})}$.
- We can add the last pswitch in the following way, where $2^s \leq q < 2^{s+1}$.

- Repeat the process above until $d(p_m) = 1$.

q is Even

$\frac{1}{2}$ $\frac{2^s}{q}$

$\frac{1}{2}$ $\frac{q-2^s}{q}$
q is Even

We want to realize $p_0 = \frac{a}{q^n}$:

- Define characteristic function $d\left(\frac{a}{q^n}\right) = \frac{q^{n-1}}{\gcd(a, q^{n-1})}$.

- We can add the last pswitch in the following way, where $2^s \leq q < 2^{s+1}$

 - $p_1 < \frac{1}{2}$, $d(p_1)$ is even

 ![Diagram](image1)

 - $p_1 > \frac{1}{2}$, $d(p_1)$ is even

 ![Diagram](image2)

 - $p_1 < \frac{1}{2}$, $d(p_1)$ is odd

 ![Diagram](image3)

 - $p_1 > \frac{1}{2}$, $d(p_1)$ is odd

 ![Diagram](image4)

- Repeat the process above until $d(p_m) = 1$.

Suppose the pswitch set is \(\{ \frac{1}{10}, \frac{2}{10}, \ldots, \frac{9}{10} \} \) and the desired probability is \(\frac{71}{100} \).
q is Even, Example

Realization of $\frac{71}{100}$ when $q = 10$

$\frac{71}{100}, d = 10$
q is Even, Example

Realization of $\frac{71}{100}$ when $q = 10$

$\frac{21}{50}$, $d = 5$
q is Even, Example

Realization of $\frac{71}{100}$ when $q = 10$

$\frac{21}{40}, d = 4$
q is Even, Example

Realization of $\frac{71}{100}$ when $q = 10$

$\frac{1}{20}, d = 2$
q is Even, Example

Realization of $\frac{71}{100}$ when $q = 10$
q is Even, Example

Realization of $\frac{71}{100}$ when $q = 10$
Why all $\frac{a}{q^n}$ can be realized when q is even?

Let’s consider characteristic function

$$d\left(\frac{a}{q^n}\right) = \frac{q^{n-1}}{\gcd(a, q^{n-1})}$$
Why all $\frac{a}{q^n}$ can be realized when q is even?

Let’s consider characteristic function

$$d\left(\frac{a}{q^n}\right) = \frac{q^{n-1}}{gcd(a, q^{n-1})}$$

$d(p) \geq 1$ is an integer.
Why all $\frac{a}{q^n}$ can be realized when q is even?

Let’s consider characteristic function

$$d\left(\frac{a}{q^n}\right) = \frac{q^{n-1}}{\gcd(a, q^{n-1})}$$

- $d(p) \geq 1$ is an integer.
- At the beginning, $d(p_0) \leq q^{n-1}$.
Why all \(\frac{a}{q^n} \) can be realized when \(q \) is even?

Let’s consider characteristic function

\[
d\left(\frac{a}{q^n}\right) = \frac{q^{n-1}}{\gcd(a, q^{n-1})}
\]

- \(d(p) \geq 1 \) is an integer.
- At the beginning, \(d(p_0) \leq q^{n-1} \).
- In each step, if \(d(p_k) > 1 \), we have \(d(p_{k+1}) < d(p_k) \).
Why all $\frac{a}{q^n}$ can be realized when q is even?

Let’s consider characteristic function

$$d\left(\frac{a}{q^n}\right) = \frac{q^{n-1}}{\gcd(a, q^{n-1})}$$

- $d(p) \geq 1$ is an integer.
- At the beginning, $d(p_0) \leq q^{n-1}$.
- In each step, if $d(p_k) > 1$, we have $d(p_{k+1}) < d(p_k)$.
- $\exists m$ s.t. $d(p_m) = 1$, where p_m can be realized with single pswitch.
Why all $\frac{a}{q^n}$ can be realized when q is even?

Let’s consider characteristic function

$$d\left(\frac{a}{q^n}\right) = \frac{q^{n-1}}{\gcd(a, q^{n-1})}$$

- $d(p) \geq 1$ is an integer.
- At the beginning, $d(p_0) \leq q^{n-1}$.
- In each step, if $d(p_k) > 1$, we have $d(p_{k+1}) < d(p_k)$.
- $\exists m$ s.t. $d(p_m) = 1$, where p_m can be realized with single pswitch.
- Required $m + 1$ pswitches, carefully calculate the number of steps we have

$$m \leq \lceil \log_2 q \rceil (n - 1)$$
Similarly, we can also get

<table>
<thead>
<tr>
<th>S = { \frac{1}{q}, \frac{2}{q}, ..., \frac{q-1}{q} }</th>
<th>all (\frac{a}{q^n}) can be realized?</th>
<th>upper bound of circuit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>q is even</td>
<td>yes, ssp circuit</td>
<td>(\lceil \log_2 q \rceil (n - 1) + 1)</td>
</tr>
<tr>
<td>q is odd, (q \mod 3 = 0)</td>
<td>yes, ssp circuit</td>
<td>(\lceil \log_3 q \rceil (n - 1) + 1)</td>
</tr>
</tbody>
</table>
$q \geq 3$ is a Prime Number

- But not every q can work:

<table>
<thead>
<tr>
<th>$S = \left{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right}$</th>
<th>all $\frac{a}{q^n}$ can be realized?</th>
<th>upper bound of circuit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>q is even</td>
<td>yes, ssp circuit</td>
<td>$\lceil \log_2 q \rceil (n - 1) + 1$</td>
</tr>
<tr>
<td>q is odd, $q \mod 3 = 0$</td>
<td>yes, ssp circuit</td>
<td>$\lceil \log_3 q \rceil (n - 1) + 1$</td>
</tr>
<tr>
<td>$q \geq 3$ is a prime number</td>
<td>no, any sp circuit</td>
<td></td>
</tr>
</tbody>
</table>
\(q \geq 3 \) is a Prime Number

- But not every \(q \) can work:

<table>
<thead>
<tr>
<th>(S = { \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} })</th>
<th>all (\frac{a}{q^n}) can be realized?</th>
<th>upper bound of circuit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q) is even</td>
<td>yes, ssp circuit</td>
<td>(\lceil \log_2 q \rceil (n - 1) + 1)</td>
</tr>
<tr>
<td>(q) is odd, (q \mod 3 = 0)</td>
<td>yes, ssp circuit</td>
<td>(\lceil \log_3 q \rceil (n - 1) + 1)</td>
</tr>
<tr>
<td>(q \geq 3) is a prime number</td>
<td>no, any sp circuit</td>
<td></td>
</tr>
</tbody>
</table>

For example, given \(S = \{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{7}{5^2} \} \) cannot be realized by an sp circuit.
Summary of Current Results

<table>
<thead>
<tr>
<th>$S = {\frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q}}$</th>
<th>all $\frac{a}{q^n}$ can be realized?</th>
<th>upper bound of circuit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>q is even</td>
<td>yes, ssp circuit</td>
<td>$\lceil \log_2 q \rceil (n - 1) + 1$</td>
</tr>
<tr>
<td>q is odd, $q \mod 3 = 0$</td>
<td>yes, ssp circuit</td>
<td>$\lceil \log_3 q \rceil (n - 1) + 1$</td>
</tr>
<tr>
<td>$q \geq 3$ is a prime number</td>
<td>no, any sp circuit</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Current Results

<table>
<thead>
<tr>
<th>Condition</th>
<th>Realization</th>
<th>Upper Bound of Circuit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S = \left{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right}$</td>
<td>all $\frac{a}{q^n}$ can be realized?</td>
<td>upper bound of circuit size</td>
</tr>
<tr>
<td>q is even</td>
<td>yes, ssp circuit</td>
<td>$\lceil \log_2 q \rceil (n - 1) + 1$</td>
</tr>
<tr>
<td>q is odd, $q \mod 3 = 0$</td>
<td>yes, ssp circuit</td>
<td>$\lceil \log_3 q \rceil (n - 1) + 1$</td>
</tr>
<tr>
<td>$q \geq 3$ is a prime number</td>
<td>no, any sp circuit</td>
<td></td>
</tr>
<tr>
<td>Others (such as 5×7)</td>
<td>open question</td>
<td></td>
</tr>
</tbody>
</table>
For some desired probabilities, they can never be realized using pswitch set $S = \left\{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right\}$. In this case, it is necessary to construct a circuit to get a good approximation of the desired probability.
Circuits for Approximating Probabilities

- For some desired probabilities, they can never be realized using pswitch set $S = \{\frac{1}{q}, \frac{2}{q}, ..., \frac{q-1}{q}\}$. In this case, it is necessary to construct a circuit to get a good approximation of the desired probability.

- p_d : the desired probability
Circuits for Approximating Probabilities

- For some desired probabilities, they can never be realized using pswitch set \(S = \{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \} \). In this case, it is necessary to construct a circuit to get a good approximation of the desired probability.

- \(p_d \) : the desired probability
- \(p_a \) : the approximation probability that can be realized.
Circuits for Approximating Probabilities

- For some desired probabilities, they can never be realized using pswitch set $S = \{ \frac{1}{q}, \frac{2}{q}, ..., \frac{q-1}{q} \}$. In this case, it is necessary to construct a circuit to get a good approximation of the desired probability.
- p_d: the desired probability
- p_a: the approximation probability that can be realized.

Theorem

Given a pswitch set $S = \{ \frac{1}{q}, \frac{2}{q}, ..., \frac{q-1}{q} \}$, for any desired probability p_d, there exists a rational probability p_a such that $|p_a - p_d| \leq \frac{1}{2q^n}$ and p_a can be realized by an ssp circuit with at most $2n - 1$ pswitches.
Circuits for Approximating Probabilities

- $2n - 1$ pswitches:

\[
0 \quad \Delta^{(2n-1)} \quad \ldots \quad 1
\]

- probability can be realized with at most $2n - 1$ pswitches.

- $\Delta^{(2n-1)}$: the maximal difference between two neighbor probabilities.

Assume the statement is true, then

\[
\Delta^{(2n-1)} \leq \frac{1}{q^n}
\]
Circuits for Approximating Probabilities

- Add 2 more pswitches, where $u \in \{0, 1, \ldots, q - 1\}$

- New probabilities (linear mapping)
Add 2 more pswitches, where $u \in \{0, 1, \ldots, q - 1\}$

New probabilities (linear mapping)
Circuits for Approximating Probabilities

- Add 2 more pswitches, where $u \in \{0, 1, \ldots, q - 1\}$

- New probabilities (linear mapping)
Circuits for Approximating Probabilities

- Add 2 more pswitches, where $u \in \{0, 1, \ldots, q - 1\}$

- New probabilities (linear mapping)
Circuits for Approximating Probabilities

- Add 2 more pswitches, where $u \in \{0, 1, \ldots, q - 1\}$

- New probabilities (linear mapping)

\[p_{2n+1} \]

Red Intervals: $\Delta^{(2n+1)} \leq \Delta^{(2n-1)} \times \frac{1}{q}$
Circuits for Approximating Probabilities

- Add 2 more pswitches, where \(u \in \{0, 1, \ldots, q - 1\} \)

\[
p_{2n-1} \quad \frac{u+1}{q} \quad \frac{q-1}{q} \quad p_{2n+1}
\]

- New probabilities (linear mapping)

\[
\begin{align*}
0 & \quad \ldots & \quad 1 \\
\bullet & \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
& \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
& \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
& \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
& \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
& \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet
\end{align*}
\]

\[
\begin{align*}
0 & \quad \frac{1}{q} & \quad \frac{2}{q} & \quad \ldots & \quad 1 \\
\bullet & \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
& \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
& \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
& \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
& \quad \bullet & \quad \bullet & \quad \bullet & \quad \bullet
\end{align*}
\]
Circuits for Approximating Probabilities

- Add 2 more pswitches, where $u \in \{0, 1, \ldots, q - 1\}$

- New probabilities (linear mapping)
Circuits for Approximating Probabilities

- Add 2 more pswitches, where \(u \in \{0, 1, \ldots, q - 1\} \)

\[
A \xrightarrow{p_{2n-1}} u+1 \xrightarrow{q^{-1}} B \rightarrow p_{2n+1}
\]

- New probabilities (linear mapping)
Circuits for Approximating Probabilities

- Add 2 more pswitches, where \(u \in \{0, 1, \ldots, q - 1\} \)

- New probabilities (linear mapping)
Circuits for Approximating Probabilities

- Add 2 more pswitches, where \(u \in \{0, 1, \ldots, q - 1\} \)

- New probabilities (linear mapping)

Green Intervals: \(\Delta^{(2n+1)} \leq \Delta^{(2n-1)} \times \frac{1}{q} \)
Circuits for Approximating Probabilities

- New probabilities (linear mapping)

\[p_2^n - 1 \leq \ldots \leq p_2^n + 1 \]

\[(0, 1) \text{ is covered by the red and green intervals.} \]

\[\Delta^{(2n+1)} \leq \Delta^{(2n-1)} \times \frac{1}{q} \leq \frac{1}{q^{n+1}}. \]

\[|p_d - p_a| \leq \Delta^{(2n+1)}/2 \leq \frac{1}{2q^{n+1}} \]
Approximate $p_{2n+1} = \frac{a}{q^n}$

- If $p_{2n+1} \in \left[\frac{u}{q}, \frac{u}{q} + \frac{1}{q} - \frac{u}{q^2} \right]$ for some $u \in \{0, 1, \ldots, q - 1\}$, add the last two pswitches:
Approximate $p_{2n+1} = \frac{a}{q^n}$

- If $p_{2n+1} \in \left[\frac{u}{q}, \frac{u}{q} + \frac{1}{q} - \frac{u}{q^2} \right]$ for some $u \in \{0, 1, ..., q - 1\}$, add the last two pswitches:

- If $p_{2n+1} \in \left[\frac{u}{q} + \frac{1}{q} - \frac{u}{q^2}, \frac{u+1}{q} \right]$ for some $u \in \{0, 1, ..., q - 1\}$, add the last two pswitches:

Approximate $p_{2n+1} = \frac{a}{q^n}$

- If $p_{2n+1} \in \left[\frac{u}{q}, \frac{u}{q} + \frac{1}{q} - \frac{u}{q^2}\right]$ for some $u \in \{0, 1, \ldots, q - 1\}$, add the last two pswitches:

- If $p_{2n+1} \in \left[\frac{u}{q} + \frac{1}{q} - \frac{u}{q^2}, \frac{u+1}{q}\right]$ for some $u \in \{0, 1, \ldots, q - 1\}$, add the last two pswitches:

- Repeat this process for $(n - 1)$ times, we can get $p_{2n-1}, p_{2n-3}, \ldots, p_1$.
Approximate $p_{2n+1} = \frac{a}{q^n}$

- If $p_{2n+1} \in \left[\frac{u}{q}, \frac{u}{q} + \frac{1}{q} - \frac{u}{q^2} \right]$ for some $u \in \{0, 1, \ldots, q - 1\}$, add the last two pswitches:

 ![Diagram 1]

- If $p_{2n+1} \in \left[\frac{u}{q} + \frac{1}{q} - \frac{u}{q^2}, \frac{u+1}{q} \right]$ for some $u \in \{0, 1, \ldots, q - 1\}$, add the last two pswitches:

 ![Diagram 2]

- Repeat this process for $(n - 1)$ times, we can get $p_{2n-1}, p_{2n-3}, \ldots, p_1$.
- Replace p_1 with nearest single pswitch.
Example of Approximating Probabilities

\[p_d^{(5)} = \frac{3}{7}, \quad S = \{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\} \]

\[p_a^{(5)} = 0.42784, \quad |p_d^{(5)} - p_a^{(5)}| = 7.3 \times 10^{-4} \]
Summary

- Given pswitch set $S = \left\{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right\}$
Given pswitch set $S = \left\{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right\}$

- If $q \mod 2 = 0$ or $q \mod 3 = 0$, all rational $\frac{a}{q^n}$ can be realized by an ssp circuit.
Summary

- Given pswitch set $S = \{\frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q}\}$
 - If $q \mod 2 = 0$ or $q \mod 3 = 0$, all rational $\frac{a}{q^n}$ can be realized by an ssp circuit.
 - If $q > 3$ is a prime number, $\exists \frac{a}{q^n}$ that cannot be realized by an sp circuit (ssp circuit).
Summary

- Given pswitch set \(S = \left\{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right\} \)
 - If \(q \mod 2 = 0 \) or \(q \mod 3 = 0 \), all rational \(\frac{a}{q^n} \) can be realized by an ssp circuit.
 - If \(q > 3 \) is a prime number, \(\exists \frac{a}{q^n} \) that cannot be realized by an sp circuit (ssp circuit).
 - Other cases, such as \(q = 35 \), open question.
Given pswitch set $S = \{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \}$

- If $q \mod 2 = 0$ or $q \mod 3 = 0$, all rational $\frac{a}{q^n}$ can be realized by an ssp circuit.
- If $q > 3$ is a prime number, $\exists \frac{a}{q^n}$ that cannot be realized by an sp circuit (ssp circuit).
- Other cases, such as $q = 35$, open question.
- $\forall q$, any desired probability can be approximated by $2n - 1$ pswitches with error $\leq \frac{1}{2q^n}$.
Summary

- Given pswitch set $S = \left\{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right\}$
 - If $q \mod 2 = 0$ or $q \mod 3 = 0$, all rational $\frac{a}{q^n}$ can be realized by an ssp circuit.
 - If $q > 3$ is a prime number, $\exists \frac{a}{q^n}$ that cannot be realized by an sp circuit (ssp circuit).
 - Other cases, such as $q = 35$, open question.
 - $\forall q$, any desired probability can be approximated by $2^n - 1$ pswitches with error $\leq \frac{1}{2q^n}$.

- Next talk, by Po-Ling Loh
Summary

- Given pswitch set $S = \left\{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \right\}$
 - If $q \mod 2 = 0$ or $q \mod 3 = 0$, all rational $\frac{a}{q^n}$ can be realized by an ssp circuit.
 - If $q > 3$ is a prime number, $\exists \frac{a}{q^n}$ that cannot be realized by an sp circuit (ssp circuit).
 - Other cases, such as $q = 35$, open question.
 - $\forall q$, any desired probability can be approximated by $2n - 1$ pswitches with error $\leq \frac{1}{2q^n}$.

- Next talk, by Po-Ling Loh
 - Applications of stochastic switching circuits
Given pswitch set $S = \{ \frac{1}{q}, \frac{2}{q}, \ldots, \frac{q-1}{q} \}$

- If $q \mod 2 = 0$ or $q \mod 3 = 0$, all rational $\frac{a}{q^n}$ can be realized by an ssp circuit.
- If $q > 3$ is a prime number, $\exists \frac{a}{q^n}$ that cannot be realized by an sp circuit (ssp circuit).
- Other cases, such as $q = 35$, open question.
- $\forall q$, any desired probability can be approximated by $2n - 1$ pswitches with error $\leq \frac{1}{2q^n}$.

Next talk, by Po-Ling Loh

- Applications of stochastic switching circuits
- Robustness of stochastic switching circuits
Thank You!!!