Fault-Tolerant Cube Graphs and Coding Theory

Jehoshua Bruck1 Ching-Tien Ho2

Abstract

Hypercubes, meshes, tori and Omega networks are well known interconnection networks for parallel computers. The structure of those graphs can be described in a more general framework called cube graphs. The idea is to assume that every node in a graph with q^ℓ nodes is represented by a unique string of ℓ symbols over $GF(q)$. The edges are specified by a set of offsets, those are vectors of length ℓ over $GF(q)$, where the two endpoints of an edge are an offset apart. We study techniques for tolerating edge faults in cube graphs that are based on adding redundant edges. The redundant graph has the property that the structure of the original graph can be maintained in the presence of edge faults. Our main contribution is a technique for adding the redundant edges that utilizes constructions of error-correcting codes and generalizes existing ad-hoc techniques.

Key words: Fault tolerance, parallel computing, interconnection networks, hypercubes, omega networks, error-correcting codes.

1California Institute of Technology, MS 136-93, Pasadena, CA 91125, bruck@paradise.caltech.edu. Supported in part by the NSF Young Investigator Award CCR-9457811, by the Sloan Research Fellowship and by a grant from the IBM Almaden Research Center, San Jose, California.

2IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, ho@almaden.ibm.com.
1 Introduction

The mesh, torus, hypercube and Omega networks are some of the most important interconnection networks for parallel computers. One of the most important issues in the design of a system which contains many components is the system’s performance in the presence of faults. Hence, it is of major practical importance to develop efficient techniques (in terms of the cost of the redundancy) to handle faults in those architectures.

Our approach for handling faults is based on a graph model. In this model the architecture is viewed as a graph, where the nodes represent the processors and the edges represent communication links between the nodes. A target graph is selected and the required amount of fault tolerance, f, is determined. Then a fault-tolerant graph, that has the same number of nodes as the target graph, is defined with the property that given any set of f or fewer faulty edges, the remaining graph (after removal of the faulty edges) is guaranteed to contain the target graph as a subgraph. Note that this approach guarantees that any algorithm designed for the target graph will run with no slowdown in the presence of f or fewer edge faults in the fault-tolerant graph, regardless of their distribution. Minimizing the cost in this model amounts to constructing a fault-tolerant graph with minimum degree. (See [4] for constructions that address node faults.)

The key to our fault-tolerant constructions is a technique based on error-correcting codes for adding redundant edges using the so-called wildcard dimensions. Our technique is capable of handling an arbitrary number of faults over arbitrary alphabets. This is a generalization of the construction in [5] that is limited to the case of MDS (Maximum Distance Separable) codes. The key to our generalization is proving the equivalence between the constructions of fault-tolerant cube graphs and constructions of generator matrices of error correcting codes (while in [5] the construction is based on parity check matrices of error-correcting codes.) First, we will describe the technique for constructing fault-tolerant hypercubes, then we will explain how it can be extended to Omega networks, tori, meshes and cube-connected cycles (CCC).
Let Q_ℓ denote the ℓ-dimensional hypercube. It consists of 2^ℓ nodes, where node i, $0 \leq i \leq 2^\ell - 1$, is represented by the ℓ-bit binary representation of i. Two nodes, say $X = (x_{\ell-1}x_{\ell-2} \ldots x_0)$ and $Y = (y_{\ell-1}y_{\ell-2} \ldots y_0)$, are connected by an edge iff there is a single j for which $x_j \neq y_j$, and this edge is called a \textit{dimension}-j edge. Hence, the set of edges in the hypercube can be partitioned into ℓ dimensions.

In [9], it was suggested to add another set of edges to the hypercube, called the \textit{wildcard dimension}, resulting in a \textit{folded} hypercube. The folded hypercube topology was also defined independently in [7], but with a different name (the bisectional interconnection network) and with a different addressing scheme for the nodes. A formal definition of the folded hypercube is given next.

\textbf{Definition 1} An ℓ-dimensional \textit{folded} hypercube, denoted by F_ℓ, is an ℓ-dimensional hypercube to which extra links are added connecting every pair of nodes that are bit-wise complements of each other.

A \textit{wildcard edge} in F_ℓ is an edge that connects node $X = (x_{\ell-1}x_{\ell-2} \ldots x_0)$ and node $\tilde{X} = (\tilde{x}_{\ell-1}\tilde{x}_{\ell-2} \ldots \tilde{x}_0)$. For example, F_3 is depicted in Figure 1; notice that the neighbors of node (000) are (001), (010), (100) and (111). The structure of Q_ℓ and F_ℓ can be described using a more general framework, see also [8].

\textbf{Definition 2} Let ℓ be a positive integer and let q be a prime number. Let $S \subseteq \{0, 1, \ldots, q - 1\}^\ell$. The graph $N(q, \ell, S)$ is a graph with q^ℓ nodes and with the edges specified by the set of vectors in S. Any two nodes, say X and Y, are connected by an edge iff there exists a vector $V \in S$ such that $X + V = Y$ where addition is vector addition performed over $GF(q)$.

Using this framework it is clear that $Q_\ell = N(2, \ell, S_1)$, where

$$S_1 = \{000 \cdots 001, 000 \cdots 010, \cdots, 100 \cdots 000\},$$

namely, the set of ℓ vectors with Hamming weight one. (The Hamming weight of a vector is the number of nonzero entries in a vector.) Also, the folded hypercube $F_\ell = N(2, \ell, S_2)$ where $S_2 = S_1 \cup \{1 \cdots 11\}$, namely, the set S_1 augmented by the all-1 vector.
The following theorem provides the basis for the fault-tolerant constructions (see [5] for a proof of a more general version of the theorem):

Theorem 1 Let \(\ell \) be a positive integer and let \(S \subseteq \{0,1\}^\ell \) be a set of \(\ell \) vectors. The graph \(N(2, \ell, S) \) is isomorphic to the hypercube \(Q_\ell \) if and only if \(S \) is a set of \(\ell \) linearly independent vectors over \(GF(2) \).

Namely, our approach for adding fault tolerance to hypercube is finding a set \(S \) of \(n \) vectors of length \(\ell \) over the finite field \(GF(2) \), with the property that any \(n - f \) vectors in the set span the space \(\{0,1\}^\ell \), (i.e., they have rank \(\ell \)). Given such a set \(S \), then, by Theorem 1, the graph \(N(2, \ell, S) \) is an \(f \)-edge-fault-tolerant hypercube. This follows because, the worst case, \(f \) faulty edges can affect at most \(f \) distinct dimensions. We denote the set \(S \) by \(S(\ell, f) \) where \(n = |S(\ell, f)| \) is the number of vectors in the set. Clearly, we like to minimize \(n \), given \(\ell \) and \(f \).

Based on the folded hypercube construction given that \(f = 1 \) then \(n = \ell + 1 \) (this is minimal). In [11], selected \(S(\ell, f) \) were given for \(f \in \{2,3\} \) and \(\ell \in \{4,11,26\} \), using a computer search. The question of constructing non-trivial \(S(\ell, f) \) for \(f = 2 \) and \(\ell > 26 \), and for any \(f > 3 \) was left as an open problem.

In this paper, we show that the problem of constructing \(S(\ell, f) \) is equivalent to the problem of constructing error-correcting codes. This connection provides the following results:

- when \(f = 2 \) and \(\ell \leq 2^r - r - 1 \) for some positive integer \(r \), then \(n = 2^r - 1 \) based on Hamming codes;
- when \(f = 3 \) and \(\ell \leq 2^r - r - 1 \) for some positive integer \(r \), then \(n = 2^r \) based on Extended Hamming codes; and
- in general, given \(f \) and \(\ell \), one can find \(n \) such that \(n - \ell \) is about \(\lceil f/2 \rceil \log n \), based on BCH codes.
In the next section we will describe a method based on error-correcting codes for constructing $S(\ell, f)$. In Section 3 we will indicate how the technique can be generalized to include Omega networks, tori, meshes and CCC’s.

2 Constructing Offsets using Error-Correcting Codes

Following the discussion in the previous section, the method for constructing f-edge-fault-tolerant hypercubes is based on the existence of a set of n vectors of length ℓ over the finite field $GF(2)$, that has the property that any $n - f$ vectors in the set span the space $\{0,1\}^\ell$, namely they have rank ℓ. We will represent the set $S(\ell, f)$ by the set of n columns of an $\ell \times n$ matrix.

Clearly, one can construct $S(\ell, f)$ by taking $f + 1$ copies of the $\ell \times \ell$ identity matrix. For example,

$$S(4,1) = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}.
$$

Namely, $n = 8$ and any 7 columns in the above matrix span $\{0,1\}^4$. However, this approach results in a fault-tolerant hypercube with very high node degree where every edge is duplicated $f + 1$ times.

A more efficient construction for the case $f = 1$ was presented in [9] by adding the all-1 vector to the identity matrix. Namely,

$$S(4,1) = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{pmatrix}. \quad (1)
$$

In this section we show that the construction of $S(\ell, f)$ is equivalent to the construction of generator matrices for error-correcting codes and show how to construct $S(\ell, f)$ for any ℓ.
and \(f \). We note here that the main idea in the construction of [5] is based on parity check matrices of error-correcting codes and is limited to MDS codes.

The main issue in the theory of error-correcting codes is to construct a large set of vectors (code) with the property that the Hamming distance between any two vectors in the code is larger than a predefined parameter \(d \) (the minimum distance). A minimum distance \(d \) allows the correction of up to \([(d - 1)/2] \) errors or the detection of up to \(d - 1 \) errors. Binary linear block codes are codes that have the property that the set of codewords is a vector subspace over \(GF(2) \). In particular, an \((n, k, d)\) code is a binary code of length \(n \) (the length of vector in the code), dimension \(k \) (consists of \(2^k \) codewords) and minimum distance \(d \). These codes can be described by a matrix known as the generator matrix which spans the code. In particular, an \((n, k, d)\) code can be described by a \(k \times n \) generator matrix that is denoted by \(G(n, k, d) \).

A vector \(V \) of length \(n \) is in the code if and only if there exists a vector \(X \in \{0, 1\}^k \) such that \(X \cdot G = V \), where computations are performed over \(GF(2) \). In other words, any linear combination of the \(k \) row vectors (of length \(n \)) in \(G \) forms a vector in the code. Clearly, the all-0 vector is also in the code. For example, the following is the generator matrix of a \((7, 4, 3)\) Hamming code:

\[
G(7, 4, 3) = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}.
\]

Notice, that any linear combination of the rows of \(G(7, 4, 3) \) has Hamming weight of at least 3. In general, we have the following lemma.

Lemma 1 The Hamming weight of every codeword in an \((n, k, d)\) code is at least \(d \).

Proof: This follows from the fact that the all-0 vector is in the code and the Hamming weight is equal to the Hamming distance to the all-0 vector. \(\Box \)
The following is our main theorem.

Theorem 2 \(G(n, k, d)\) and \(S(\ell, f)\) are equivalent when \(\ell = k\) and \(f = d - 1\). Namely,

1. A generator matrix, \(G(n, k, d)\), of an \((n, k, d)\) binary linear error-correcting block code is also an \(S(k, d - 1)\) matrix.

2. A matrix \(S(\ell, f)\) with \(n\) columns can be used as a generator matrix for an \((n, \ell, f + 1)\) binary linear error-correcting block code.

Proof:

Proof of (1): We need to prove that every \(n - d + 1\) columns of \(G(n, k, d)\) span \(\{0, 1\}^k\). The proof is by contradiction. Assume that there exists a set of \(n - d + 1\) columns of \(G(n, k, d)\) that do not span \(\{0, 1\}^k\). Let \(S_1\) be the matrix associated with those columns. Namely, the column rank of the matrix \(S_1\) is less than \(k\) and the row rank of \(S_1\) is also less than \(k\). Hence, there is a linear combination of the rows of \(G(n, k, d)\) that is 0 in the coordinates that correspond to \(S_1\). However, this linear combination has at least \(n - d + 1\) 0’s and its Hamming weight is smaller than \(d\). This is a contradiction to the fact that every nonzero codeword has Hamming weight of \(d\) or more.

Proof of (2): We need to prove that the subspace that is spanned by a matrix \(S(\ell, f)\) has minimum Hamming weight of \(f + 1\). Again, the proof is by contradiction. Assume that the subspace that is spanned by \(S(\ell, f)\) contains a vector, denoted by \(V\), with Hamming weight of \(f\). Now consider the matrix \(S_2\) that is obtained from \(S(\ell, f)\) by deleting the \(f\) columns that correspond to the 1’s in \(V\). The matrix \(S_2\) has \(n - f\) columns and its rank is smaller than \(\ell\), this is a contradiction. \(\Box\)

Theorem 2 shows that the problem of constructing \(S(\ell, f)\) matrices is equivalent to constructing error-correcting codes. Hence, the theory of error-correcting codes can be applied to construct \(S(\ell, f)\) matrices for arbitrary sets of parameters as well as to prove bounds on the size of those constructions. In the following we provide a number of examples that utilize these connections.
Example 1 (Simple Parity Codes)
By Theorem 2, the case $f = 1$ can be dealt with by a matrix $G(k + 1, k, 2) = (I_k, 1_k)$
which corresponds to the simple parity code, where I_k is the $k \times k$ identity matrix and 1_k
is the all-1 vector of length k. This result corresponds to the so-called wildcard dimensions
in hypercubes [5, 8, 9]. For instance, when $k = 4$, $G(5, 4, 2) = S(4, 1)$ which is given in
Equation (1).

Example 2 (Hamming Codes and Extended Hamming Codes)
By Theorem 2, the case $f = 2$ and $f = 3$ can be dealt with by a $G(n, k, 3)$ and $G(n, k, 4)$, re-
spectively. This can be solved by utilizing the construction of Hamming codes and Extended
Hamming codes, respectively. Hamming codes ($d = 3$) exist for $n = 2^r - 1$ and $k = 2^r - r - 1$,
for every $r \geq 2$. Extended Hamming codes ($d = 4$) exist for $n = 2^r$ and $k = 2^r - r - 1$, for
every $r \geq 2$. This result generalizes the selected constructions for $S(\ell, f)$ that were found
in [11] using ad-hoc computer search. For example, we consider the case $r = 3$.

$$S(4, 2) = G(7, 4, 3) = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix}.$$ \hfill (2)

$$S(4, 3) = G(8, 4, 4) = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}.$$

We note here that Hamming codes can be constructed for arbitrary values of k,

$$2^{r-1} - (r - 1) - 1 < k < 2^r - r - 1$$

by deleting rows (and resulting all-zero columns) in $G(2^r - 1, 2^r - r - 1, 3)$.

8
Example 3 (BCH codes and Beyond)
By Theorem 2, for general f we can use known construction, like those of BCH codes [10]. For a table of the best known constructions please see [2].

Example 4 (Upper and Lower Bounds) We can apply Theorem 2 to derive bounds on n in $S(\ell, f)$ using known results in coding theory [10].

- By the Hamming Bound:
\[
2^{n-\ell} \geq 1 + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{\lfloor f/2 \rfloor}.
\]
From which it follows that the construction based on Hamming codes ($f = 2$) is optimal.

- By the Singleton Bound:
\[
n \geq f + \ell.
\]

- By the Gilbert-Varshamov bound, $S(\ell, f)$ exists for every n such that:
\[
1 + \binom{n-1}{1} + \binom{n-1}{2} + \cdots + \binom{n-1}{f-1} \leq 2^{n-\ell}.
\]

- By the Griesmer bound:
\[
n \geq \sum_{i=0}^{i=f-1} \left\lfloor \frac{f+1}{2^i} \right\rfloor.
\]

3 Extensions and Conclusions

We have described a technique for constructing f-edge-fault-tolerant hypercube graphs. Those are graphs that have the property that they contain a hypercube as a subgraph
in the presence of arbitrary f edge faults. The key to the technique is the construction of a set of redundant dimensions using the columns of a generator matrix of error-correcting codes. The technique can be generalized in a number of ways.

3.1 The Class of Omega Networks

Omega networks are networks that consist of stages of switches (as opposed to the hypercube that is a point-to-point network). It is a well-known fact that a stage in an Omega network corresponds to a dimension in a hypercube. Figure 2 depicts an 8-input unshuffle network, which belongs to the class of Omega networks. Stages are labeled by binary vectors called masks and are shown above the stages in the figure. A switch in a stage with a mask M has as inputs the lines that correspond to X and $X + M$ (over $GF(2)$). There is a unique path between an input and output of the network. For example, the path between (000) and (101) is highlighted.

Figure 3 shows an 8-input unshuffle network enhanced with a wildcard-dimension stage. The additional stage, depicted within the big dotted box as the last stage, has a mask vector $M = (11 \ldots 1)$, which corresponds to the inputs of the form X and \bar{X}. The two paths from node (000) to node (101) are highlighted in the figure. For clarity, the functionality of the network can be represented by the figure below it, using the so-called Knuth’s sorting network notation. Using this notation, a vertical line represents a switch. Our goal is to be able to tolerate f faults in vertical lines and still maintain the same structure. Clearly, the condition is similar to the case when the network is a hypercube, namely, the set of healthy masks (stages) should span the space of the inputs.

Figure 4 shows a 16-input 4-stage network enhanced by 3 extra stages, based on Hamming Codes $G(7, 4, 3)$, Equation (2), for tolerating any two-stage faults. The network has the property that if any two stages are faulty, the remaining network is functionally equivalent to a 16-input 4-stage network. In general, for an Omega network with 2^ℓ inputs and ℓ stages, one can add $n - \ell$ extra stages, where $n = |S(\ell, f)|$, such that given any f switch faults the remaining network is still functionally equivalent to the original Omega network.
We note here that Omega networks with switches with more inputs can be handled using error-correcting codes over larger fields.

A couple remarks regarding the implementation of our method. Our technique can be applied to construct fault-tolerant Omega networks by adding extra stages of switches and a by-passing capability to each switch. The by-passing capability of a switch can be implemented by adding demultiplexers and multiplexers outside the switch chips [1]. Note that switches are currently designed for 8 or 16 inputs and consist of complex circuitry to support buffer management and flow control. While faults can occur at switches it is less likely they will occur at the by-passing circuits which are considerably simpler.

3.2 The Meshes and Tori Networks

Let \(q \) be the width of the tori/meshes and assume \(q \) is prime throughout this subsection. We now generalize our construction of \(f \)-edge-fault-tolerant hypercubes to \(f \)-edge-fault-tolerant tori. First, define \(S_q(\ell,f) \) as a set of \(n \) vectors of length \(\ell \) over the finite field \(GF(q) \) with the property that any \(n - f \) vectors in \(S \) span the space \(\{0, 1, \cdots, q - 1\}^\ell \). Given such a set \(S \), then the graph \(N(q, \ell, S) \) is an \(f \)-edge-fault-tolerant tori of width \(q \) and dimension \(\ell \). If we denote the generator matrix of a code with length \(n \), dimension \(k \), minimum distance \(d \) and alphabet set \(\{0, 1, \cdots, q - 1\} \) by \(G_q(n, k, d) \), then we have the following generalization of Theorem 2.

Theorem 3 \(G_q(n, k, d) \) and \(S_q(\ell, f) \) are equivalent when \(\ell = k \) and \(f = d - 1 \). Namely,

1. A generator matrix, \(G_q(n, k, d) \), of an \((n, k, d) \) linear error-correcting block code over \(GF(q) \) is also an \(S_q(k, d - 1) \) matrix.

2. A matrix \(S(\ell, f) \) with \(n \) columns can be used as a generator matrix for an \((n, \ell, f + 1) \) linear error-correcting block code over \(GF(q) \).

For example, if \(q = 3 \) one can derive the generator matrix \(G_q(n, k, d) = G_3(13, 10, 3) \), from a Hamming code over \(GF(3) \), as
To derive \(S_q(\ell, f) = S_3(3, 2) \), the set of vectors defining 2-edge-fault-tolerant \(3 \times 3 \times 3 \) tori, we use \(G_q(n, k, d) = G_3(6, 3, 3) \) by letting \(q = 3 \), \(k = \ell \) and \(d = f + 1 \) and finding a minimum \(n \) available from the codes. In this case, \(G_3(6, 3, 3) \) can be derived by removing any 7 rows (and resulting 7 all-zero columns) from \(G_3(13, 10, 3) \) as, for instance,

\[
G_3(13, 10, 3) = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2
\end{pmatrix}.
\]

Note that our previous result in [5] only works for \(f \)-edge-fault-tolerant tori of width \(q \) and dimension \(\ell \) where \(f \leq q + 1 - \ell \). Thus, for this case, where \(q = 3 \) and \(\ell = 3 \), our previous result can only tolerate 1 fault.

Finally, using the technique of wildcard dimensions, any \(f \)-edge-fault-tolerant torus is also a \((2f + 1) \)-edge-fault-tolerant mesh of the same width and dimension [5].

3.3 The CCC Network

In [3] we have described a method for handling edge faults in cube-connected cycle (CCC) graphs. The approach described here for fault-tolerant hypercubes can be similarly applied
for fault-tolerant CCC’s. This yields a fault-tolerant CCC of smaller degree than those constructions in [3] for the case of multiple cube-edge faults. More specifically, let $CCC(\ell, n)$, $n \geq \ell$, be the family of CCC’s with 2^ℓ cycles and n nodes per cycle and in which the ℓ nodes with corresponding cube edges are not necessarily contiguous. It is possible to create a fault-tolerant CCC of degree 4 and of the same size as $CCC(\ell, n)$, where $n = |S(\ell, f)|$, such that it tolerates any single cycle-edge fault and any f cube-edges fault when n is even. (When n is odd, $n = |S(\ell, f)|+1$.) The construction can be easily derived from Construction I of fault-tolerant CCC described in [3] and the construction of cube dimensions given by $S(\ell, f)$ here.

Acknowledgment

We would like to thank the editor and the referees for their comments and suggestions that helped to improve the paper.

References

Figure 1: A 3-dimensional folded hypercube.

Figure 2: An 8-input unshuffle network.
Figure 3: An 8-input unshuffle network enhanced with a wildcard-dimension stage.

Figure 4: A 16-input regular multi-stage network enhanced with 3 extra stages, based on Hamming Codes $G(7, 4, 3)$, for tolerating any two-stage faults.