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Abstract

We present 2 and 3-dimensional interleaving techniques for correcting 2 and 3-
dimensional bursts (or clusters) of errors, where a cluster of errors is characterized by its
area or volume. A recent application of correction of 2-dimensional clusters appeared
in the context of holographic storage. Our main contribution is the construction of
efficient 2 and 3-dimensional interleaving schemes. The schemes are based on arrays of
integers with the property that every connected component of area or volume ¢ consists
of distinct integers (we call these t-interleaved arrays). In the 2-dimensional case, our
constructions are optimal in the sense that they contain the smallest possible number
of distinct integers, hence minimizing the number of codes required in an interleaving

scheme.
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1 Introduction

A one-dimensional burst error of length ¢ is a set of errors that are confined to ¢ consecutive
locations [14]. In this paper, we generalize the concept of the one-dimensional burst to
two and three dimensions by considering the connected area or volume, say ¢, containing
the errors. Most 2-dimensional burst error-correcting codes that have been studied in the
literature so far consider burst errors of a given rectangular shape, say t; x t3 [1, 3, 4, 7,
10, 11, 12]. However, there are also papers that study other shapes as well. For instance,
in [2], the authors study “circular” type of bursts. In [6, 9, 15], the authors consider metrics
given by the rank of the array: a particular case, is the correction of “criss-cross” type
of errors. Metrics for different channels, including 2-dimensional clusters, are presented
in [8]. A recent application of correction of 2-dimensional clusters appeared in the context

of holographic storage [13].

The most common approach to deal with one-dimensional bursts is using interleaving
schemes. The idea is to implement a number of separate codes on consecutive symbols.
For example, to deal with correction of bursts of length 3 one can use 3 different 1-error

correcting codes that encode an interleaved sequence as follows:
123123123123123123123123123123. ..

Here, 1,2 and 3 correspond to the first, second and third code, respectively. This straight-
forward interleaving scheme requiring ¢ different codes for bursts of length ¢ is optimal in
the sense that there is no other interleaving scheme that can correct a burst of length up

to ¢ that requires less than ¢ different codes.

However, in the 2-dimensional case, it is not obvious how to interleave a minimal number
of codes such that any cluster of area ¢ can be corrected. Our main contribution is the
construction of efficient 2 and 3-dimensional interleaving schemes. In the 2-dimensional
case, our constructions are optimal in the sense that they contain the smallest possible
number of distinct codes. We note here that a related construction with the constraint that

the area has a rectangular shape was presented in [5].

Next we formalize the problem of constructing 2-dimensional interleaving schemes. The

3-dimensional case will be presented in Section 3.

Definition 1.1 We say that an element (,j) in a 2-dimensional array is connected to



elements (i +1,7), (¢ —1,7), (¢,7 + 1) and (i,5 — 1), provided those elements exist.

Definition 1.2 A path of length n from Ey to E,, in a 2-dimensional array is a set of n+1
elements {E; |0 < i < n} such that for every 0 < ¢ < n, element E; is connected to element
Ei.

Definition 1.3 We say that a set of ¢ elements in a 2-dimensional array is a cluster of size

t, if any two elements in the cluster belong in a path contained in the set.

The concept of a cluster of size ¢ generalizes in two dimensions the concept of a burst of
size t in one dimension. The same idea can be generalized to multiple dimensions (see

Section 3).

Example 1.1 The 1’s in the array below constitute a cluster of size 7.
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Definition 1.4 Let A be a 2-dimensional array of integers, namely, the elements of the
array are labeled by integers. We say that A is t-interleaved if every cluster of size ¢ in
A consists of t distinct integers. The degree of interleaving of the array is the number of

distinct integers it contains.

Notice that, if the integers represent different codes (like in the one-dimensional case), then
codes distributed in a t-interleaved array can correct any cluster of size up to ¢ (or more

than one cluster, depending on the error-correcting capability of the codes being used).

Example 1.2 The following array is 3-interleaved with degree of interleaving 5:
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Our goal is to construct t-interleaved arrays with minimal degree of interleaving. Notice
that in the one-dimensional case, the minimal degree of interleaving ¢ coincides with the
size of the burst we want to correct. This is not the case in the 2-dimensional case, as we

will see in the sequel.

In the next section we present optimal 2-dimensional interleaving schemes. In Section 3 we

generalize our methods to three (and more) dimensions.

2 Two-Dimensional Interleaving

In this section we present two optimal constructions for t-interleaved arrays. We start by

presenting lower bounds on the degree of interleaving of ¢-interleaved arrays.

2.1 Lower Bounds

Theorem 2.1 Let A be a t-interleaved array. Then

1. If ¢ is even, then the degree of interleaving of A is at least %

2. If t is odd, then the degree of interleaving of A is at least tzT‘H

Proof: The idea of the proof is to take a t-interleaved array and to consider a 2-dimensional
“sphere” in the array, of size % when ¢ is even and size t27+1 when ¢ is odd. Then we show

that any two elements in the sphere must be distinct.

In particular, for every ¢, we define 2-dimensional spheres and we denote them by Bs(t).

By(t) is defined inductively for the odd and even cases.



Consider an array. The sphere By(1) is a single element in the array. The sphere By(2) is a
1 x 2 subarray. The sphere Ba(t + 2) is constructed from By(t) by adding all the elements

in the array that are connected to the boundary of Bs(t).

It is straightforward to verify that Bs(t) consists of % elements for ¢ even and tQTH elements

for ¢ odd.

For example, the first six By(t)’s are as follows (Bz(t) is labeled by é&):
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Next we prove that for every ¢, any two elements of By(t) are connected by a path of length
at most ¢ — 1. The proof is by induction. Clearly, the claim is true for ¢ = 1 and ¢t = 2.
Now we assume that the claim is true for ¢ and we prove it for ¢ + 2. Notice that by the
construction, By(t) is contained in Bo(t + 2). Let 7 and j be two arbitrary elements of
By(t + 2). If both are also elements of By(t) then by the induction hypothesis there is a
path of length at most ¢ — 1 between them. Otherwise, by the construction of Ba(t), an
element in By(t + 2) that is not in By(t) is connected to an element in By (t). Hence, there

is a path of length at most ¢ 4+ 1 between ¢ and j, proving the induction.

Since Bs(t) is contained in a ¢-interleaved array, it must consist of distinct elements. There-

fore, the degree of interleaving of the array is at least the number of elements of By(t). O

2.2 Constructions

Next we present constructions of t-interleaved arrays of optimal size, namely, they match

the lower bounds described above.

First we describe an interleaving scheme that we call the toroidal interleaving scheme.

Construction 2.1 Consider a 2-dimensional array and an integer m. Label the coordinates
of the array toroidally on m, i.e., the coordinates are given by (z,y), where x and y are taken
modulo m. Let b be relatively prime with m. Then, for each a modulo m, the coordinates

(i,a + ib) (taken modulo m) are assigned the same number a.

Example 2.1 Assume that we have a 4x6 array. Taking m = 2 and b = 1, Construction 2.1

gives the following labeling of the array:
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It is easy to verify that the array above is 2-interleaved.

Similarly, if we consider a 5 x 10 array for m =5 and b = 3, we obtain
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The reader can verify that the array above is 3-interleaved.

As we can see in Example 2.1, given an array labeled by Construction 2.1, in order to
find if the array is ¢ interleaved, it is enough to consider the m x m array obtained by the

construction. The labeling of the whole array is obtained by tiling it with the m x m array.

Definition 2.1 The Lee distance between two elements in a torus is the length of the
shortest path they belong to (for example, two adjacent elements are at Lee distance 1).
The Lee weight of an element in a torus is the Lee distance between the element and (0,0).
The minimum Lee distance of a set of elements is the minimum of the Lee distance between

all the pairs of elements in the set.

The following lemma gives a method for finding ¢ in Construction 2.1.

Lemma 2.1 Consider Construction 2.1 with parameters m and b. Let ¢ be the minimum
Lee distance in the m x m torus between two coordinates labeled with the same number.
Then, the array is t-interleaved. In particular, it is enough to consider the minimum Lee
distance between those coordinates labeled with a = 0, i.e., between the coordinates (i, b),

0<:<m-—1.



Proof: Consider a cluster of size at most ¢. Take any two coordinates in the cluster. There
is a path from one to the other of length at most ¢ — 1 which is contained in the cluster.
Therefore, the Lee distance between the two coordinates is at most ¢ — 1. By hypothesis,

they cannot have the same label, proving the claim. O

In other words, it is enough to analyze the set {(¢,4b) : 0 < i < m — 1} and find its
minimum Lee distance ¢ in order to determine if the array with the toroidal labeling defined

by m and b is t-interleaved.

The next theorem is our main result in this section.

Theorem 2.2 Let ¢ be an odd integer, m = £ +1 , and b = t. Then, Construction 2.1 with

parameters m and b gives a t-interleaved array.

Proof: According to Lemma 2.1, it is enough to prove that the set
{(i,it) : 0 <4 < m — 1} has minimum Lee distance at least ¢, where the coordinates are

taken modulo £ +1

The case t = 1 is trivial, so assume that ¢ > 3. Since ¢ is an odd integer, either ¢ = 45 — 1
ort =45 + 1, where j > 1. We study the case t = 45 — 1 only, the other one is proven

similarly.

Without loss of generality, it is enough to measure the Lee distance between (i,it) and
(0,0), since the set {(,it) : 0 <i <m — 1} is linear (i.e., it is enough to find the minimal
Lee weight of the set).

Notice that the Lee weight of (i,4t) is given by min{i, —i} + min{it,—it}, where all the

values are taken modulo 2 "’1

It is enough to consider those i’s such that 1 <7 < ¢—1 or t27+1 —t—-1)<i< ’527_1,
otherwise either 7 > t or —i > t. Moreover, since (—i,—it) has the same Lee weight as
(i,4t), it is enough to assume that 1 < i < ¢t — 1. Also, notice that tzTH = 852 — 45 + 1.

There are four cases:

1<i<j—1: Notice that it < j(4j —1) < 452 -2 < £ £21 ) so min{it, —it} = it. Therefore, the Lee

weight of (z,4t) is given by i + it = i(t + 1) >t + 1, proving the claim.



j <i<2j—1: These conditions imply that +L < it < £+L. Thus, min{it, —it} = £FL — it. The

Lee weight of (i,4t) is then given by

241

o —it=1) > 82 —4j+1—(2j —1)4j —2) =45 — 1 =1,

proving the claim.

2j <i<3j —1: These conditions imply that £ < it < 32 Thus, min{it, —it} = it — £5L. The Lee
weight of (4,4t) is then given by

241

o 2 8T8 - 1=4-1=t,

i(t+1) —

proving the claim.

37 <1 <45 —2: These conditions imply that % < it < 2. Thus, min{it, —it} = #2 + 1 — it. The Lee
weight of (i,4t) is then given by

241 —i(t—1) > 1652 -8 +2— (45 —2)? =8j — 2 = 2t,

proving the claim.

The case t = 45 + 1 is proven similarly. O

The next theorem gives an analogous result for ¢ even. The proof is similar to that of

Theorem 2.2, and we omit it here.

Theorem 2.3 Let ¢ be an even integer, m = %, and b =t — 1. Then, Construction 2.1

with parameters m and b gives a t-interleaved array.

Example 2.2 Consider the case t = 4. According to Theorem 2.3, m = 8 and b = 3.

Therefore, tiling an array with the following 8 x 8 array gives a 4-interleaved array:
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For t = 5, according to Theorem 2.2, m = 13 and b = 5. Therefore, tiling an array with the

following 13 x 13 array gives a 5-interleaved array:

0123 |4]|5]6]|7]8 1011 |12
10111112 0 | 1 3 5|16 |7

3| 4 6 | 781910711120 |1
11|12 1 314|567 10
6 | 7|89 (104114120 | 1|2 |3 |4]|5
1|2 4 15|16 |7 1011 12| 0

9|/10411 (12 0|1 |23 |4]|5|6]|7
4 15|67 10| 11| 12 2|3
121 0 2 516 |7 10|11
7|8 10111121 0|12 3 5|6
3 516 |7 10111120 | 1
10(11(12y{0 (12|13 |4|5|6|7|8]|9
516|789 10|11 12]0 |1 3|4

Theorems 2.2 and 2.3 give optimal interleaving schemes for any £, since they meet the lower

bound given by Theorem 2.1.

Next we present an optimal construction for ¢ even.

Construction 2.2 Let t be even. Let Ci(t) be the £ x £ array labeled by the integers {j :
0<5< % — 1} and Cy(t) be the % X % array labeled by the integers {j : % <j< % — 1}

10



The ¢ interleaved array As(t) consists of the chess-board-like tiling using the arrays Ci(t)
and 02 (t)

Example 2.3 Let t = 6. Then

0 2

Ci(6)=|3 |4 |5

6 |7 |8

9 10|11

Cy(6) =| 12|13 | 14

1516 | 17

and
0 219 |10(11]0 2191|1011
3145 12(13|14| 3| 4|5 |12|13 |14
6 8 15|16 | 17| 6 8 15|16 | 17
Az (6) =

9 |10{11] 0|1 (2|9 |10|11]0 |1 ]2
12113143 | 4 |5 (1213|143 |4 | 5
15|16 |17| 6 | 7|8 1516|176 | 7 | 8

Theorem 2.4 For every even t, the arrays As(t) in Construction 2.2 are ¢-interleaved.

Proof: The proof follows by observing that a path connecting any two elements with the

same label, say 0 in C] arrays, must go through a Cy array. Hence, it is of length at least £. O

3 Three Dimensional Interleaving

In this section we extend the results of the previous section to the case of three dimensions.

The results can be further extended to higher dimensions, but we will not do it here.

We briefly adapt some of the definitions given in the introduction.

11



Definition 3.1 We say that an element (i1,72,i3) in a 3-dimensional array is connected
to elements (il + 1,i2,i3), (il - 1,i2,i3), (il,ig + 1,i3), (’il,ig - 1,i3), (il,iQ,ig + 1) and

(41,12,13 — 1), provided those elements exist.

Notice that the definition above can be trivially extended to multiple dimensions. In a

k-dimensional array, an element is in general connected to 2k elements in the array.

Definition 3.2 A path of length n from Ej to E, in a 3 (multi)-dimensional array is a set
of n+ 1 elements {E; |0 < i < n} such that for every 0 < i < n, element E; is connected to

element E; .

Definition 3.3 We say that a set of ¢ elements in a 3 (multi)-dimensional array is a cluster

of size t, if any two elements in the cluster belong in a path contained in the set.

Definition 3.4 Let A be a 3 (multi)-dimensional array of integers, namely, the elements
of the array are labeled by integers. We say that A is t-interleaved if every cluster of size ¢
in A consists of ¢ distinct integers. The degree of interleaving of the array is the number of

distinct integers it contains.

As in the previous section, we start with lower bounds.

3.1 Lower Bounds
Theorem 3.1 Let A be a t-interleaved 3-dimensional array. Then

1. If ¢ is even, then the degree of interleaving of A is at least tg*’TQt.

2. If t is odd, then the degree of interleaving of A is at least ta*'T‘r’t.

Proof: As in Theorem 2.1, we take a t-interleaved array and consider a 3-dimensional
. . . . .3 . .
“sphere” in the array, which we will see that it has size % when 7 is even and size %

when £ is odd. Any two elements in the sphere must be distinct.

For every t, we define 3-dimensional spheres and we denote them by Bs(t). Bs(t) is defined

inductively for the odd and even cases.

12



Consider a 3-dimensional ¢-interleaved array. The sphere Bs(1) is a single element in the
array. The sphere B3(2) is a 1 x 2 subarray. The sphere Bs(t+ 2) is constructed from Bs(t)
by adding all the elements in the array that are connected to the boundary of Bs(t).

3 .
£ th when t is even and

An easy counting argument shows that the cardinality of Bs(t) is

3 .
HG'—E’t when ¢ is odd.

Since the array is t-interleaved, it is shown that the elements in any sphere Bs(t) must be

different similarly to Theorem 2.1. O

For instance, the first 6 Bs(¢)’s are as follows:

e t=1
1
e t=2
1 |1
e t=3
1
1 (3 |1
1
et =4
1 |1
1 /3 |3 |1
1 |1
et=15
1
1 (3 |1
1 13 |5 (3 |1
1 13
1
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e t=06

1)1
113 |3 |1
1 13 |5 |5 |3 |1
113 |3 |1

1)1

The numbers above represent a 3-dimensional “sphere”: wherever we see numbers, we have
a 2-dimensional projection of the 3-dimensional sphere over the plane of the paper. These
projections are 2-dimensional spheres as described in the previous section. The numbers
indicate how many symbols we have in each level. For instance, for ¢ = 3 above, the 3
indicates that there is one symbol above and one symbol below the plane of the paper. The

5 indicates that there are two above and two below, and so on.

3.2 Constructions

Next we provide some constructions that give upper bounds on the degree of interleaving
in 3-dimensions of a t¢-interleaved array. In most cases, we cannot reach the lower bound
given by Theorem 3.1, as in the 2-dimensional case. We do not know if the lower bound is

tight.

We describe next a toroidal interleaving scheme that is a generalization of the one given in

the previous section.

Construction 3.1 Consider a 3-dimensional array and an integer m. Label the coordinates
of the array toroidally on m, i.e., the coordinates are given by (x,y, z), where x, y and z are
taken modulo m. Let at least b or ¢ be relatively prime with m. Then, for each a modulo

m, the coordinates (i,7,a + ib+ jc) (taken modulo m) are assigned the same number a.

Construction 3.1 gives a 3-dimensional interleaving scheme with degree of interleaving m.
The array is t-interleaved, where ¢ is the minimum (Lee) distance in the torus between coor-
dinates with the same number a. Since coordinates with different numbers a are essentially
translations from each other, without loss of generality, in order to measure the minimum

Lee) distance, it is enough to consider a = 0.
, g

14



Example 3.1 Consider Construction 3.1 with m = 7, b = 2 and ¢ = 3. The coordinates

labeled by 0 are (4, j,2i + 37), where everything is taken modulo 7. Explicitly, they are,

(0,0,0) | (0,1,3) | (0,2,6) | (0,3,2) | (0,4,5) | (0,5,1) | (0,6,4)
(1,0,2) | (1,1,5) | (1,2,1) | (1,3,4) | (1,4,0) | (1,5,3) | (0,6,6)
(2,0,4) | (2,1,0) | (2,2,3) | (2,3,6) | (2,4,2) | (2,5,5) | (2,6,1)
(3,0,6) | (3,1,2) | (3,2,5) | (3,3,1) | (3,4,4) | (3,5,0) | (3,6,3)
(4,0,1) | (4,1,4) | (4,2,0) | (4,3,3) | (4,4,6) | (4,5,2) | (4,6,5)
(5,0,3) | (5,1,6) | (5,2,2) | (5,3,5) | (5,4,1) | (5,5,4) | (5,6,0)
(6,0,5) | (6,1,1) | (6,2,4) | (6,3,0) | (6,4,3) | (6,5,6) | (6,6,2)

It can be easily verified that the minimum Lee weight of the set above is 3, therefore, the
resulting array is 3-interleaved, i.e., every cluster of size 3 has different numbers. Since, for

t = 3, the lower bound on the degree of interleaving is 7, this construction is optimal.

In order to obtain the maximal value of ¢ from Construction 3.1 we optimize over all
possible values of b and c¢. This gives us upper bounds on the degree of interleaving for a
given t. Table 1 presents lower bounds based on Theorem 3.1 and upper bounds based on
Construction 3.1 that were obtained by a computer search. We also add in the table values

of b and ¢ that optimize the construction (of course, they are not necessarily unique).

We describe next an interleaving scheme that is a generalization of Construction 2.2 given

in the previous section.

Construction 3.2 Assume that ¢ is even. The construction is recursive. Assume that
we have an interleaving scheme for the case £ that we call A(/2). Replace every label in

A(t/2) by a 2 x 2 x 2 array C;, where C; consists of the 8 integers {8 + 7|0 < j < 7}.

Using an argument similar to the one in Theorem 2.4, we can prove that the array given by

Construction 3.2 is t-interleaved.

Example 3.2 Consider Construction 3.2 with ¢ = 2 and m = 2, namely we consider a

2 x 2 x 2 torus with the first plane being

15



t | Lower bound Upper bound Upper bound
Construction 3.1 (b, c) Construction 3.2

2 2 (1,1)

3 7 7 (2,3)

4 12 12 (3,5) 16

5 25 27 (4,10)

6 38 38 (7,11) 56

7 63 70 (16,25)

8 88 92 (9,39) 96

9 129 145 (9,61)

10 170 190 (9,71) 216

11 231 260 (40,94)

12 292 312 (13,115) 304

13 377 421 (16,182)

14 462 486 (41,57) 560

15 575 635 (146,274)

16 688 724 (49,79) 736

Table 1: Lower and upper bounds on the degree of interleaving of 3-dimensional -interleaved

arrays

16



and the second plane being

Using Construction 3.2 for ¢ = 4, we replace the 0 by the 2 x 2 X 2 torus consisting of the

following two planes:

0 |1
3
4 |5

and we replace the 1 by the 2 x 2 x 2 torus consisting of the following two planes:

819
10] 11
12] 13
141 15

The degree of interleaving for ¢ using Construction 3.2 is 8 times the degree of interleaving
that we had for ¢/2.

Assuming that we use an optimal construction for the case ¢/2 (i.e., a construction meeting

the lower bound), we can prove the following:

Lemma 3.1 Assume that we are given an optimal 3-dimensional ¢-interleaved array. Then,
using Construction 3.2 to construct a 3-dimensional 2¢-interleaved array, this array has
degree of interleaving 2¢ away from the lower bound when ¢ is even (6¢ away from the lower
bound when ¢ is odd).

Proof: We will prove the lemma for even ¢. The odd case is proven similarly.

By hypothesis and Theorem 3.1, the degree of the t-interleaved array is:

17



3+ 2t
T

The degree of the 2t-interleaved array using Construction 3.2 is:

3 3
8(t ;%) _ () 22(%) o

We include the degrees of interleaving associated with Construction 3.2 in Table 1. We can

see that for ¢t = 12, it improves Construction 3.1.

In Construction 3.2 we replace every label by a 2 x 2 x 2 array. This construction can be
generalized to include the case of d x d x d arrays. However, it is not difficult to see that

the choice d = 2 provides the smallest degree of interleaving.
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