Trading Weight Size for Circuit Depth:
An LT, Circuit for Comparison*

Vasken Bohossian, Marc D. Riedel and Jehoshua Bruck

California Institute of Technology
Mail Code: 136-93
Pasadena, CA 91125

Email: {vincent,riedel,bruck}@paradise.caltech.edu

November 13, 1998

Abstract

We present an explicit construction of a circuit for the COMPARISON function in ﬁ’z,
the class of polynomial-size linear threshold circuits of depth two with polynomially growing
weights. Goldmann and Karpinski proved that LTy C LT in [4]. Hofmeister presented a
simplified version of the same result in [6]. We have further simplified the results of these two
papers by limiting ourselves to the simulation of COMPARISON. Our construction has size
O(n*logn), a significant improvement on the general bound of O(n'?log"' n) in [6].

*Supported in part by an NSF Young Investigator Award (CCR-9457811), by a Sloan Research Fellowship, by an
IBM Partnership Award and by DARPA through an agreement with NASA/OSAT.

1 Introduction

A linear threshold function f(X) is a Boolean-valued function with Boolean inputs X =
T1,%2," -, Ty, such that

R P

n
where F(X) = wy + Zwimi
=1

for some fixed weights w; € Z, 0 <1 < n.

A linear threshold gate is a device that computes a linear threshold function. The class LT consists
of Boolean functions that are computable with a single linear threshold gate. The class LTy consists
of Boolean functions that are computable by an unbounded fan-in, polynomial-size, depth d circuit
of linear threshold gates. (The size of the circuit is the number of wires.)

Threshold circuits have been widely studied; surveys of the topic can be found in [7] and [9]. A
question that arises is how powerful threshold circuit are if one limits oneself to threshold gates
with only “small” growth in the size of the weights [2], [11]. It has been shown that there exist
functions that can be implemented by a linear threshold gate with exponentially growing weights,
but cannot be implemented by one with polynomially growing weights [5], [8], [10], [11].

In light of this result, a subclass of LT has been defined: the class LT of functions with “small”
weights. Each function

f(X) = sgn (wo + z”: wz'lvi)

=1

in LT is characterized by the property that the weights are integers bounded by a polynomial in 7,
i.e., |w;| < n¢ for some constant ¢ > 0. Siu and Bruck proved that LTy C LTsq41 [11]. Goldmann
and Karpinski improved the bound to LTy C LT4,1 by showing that LT, C LT and generalizing
to arbitrary depth [4]. Hofmeister presented a simplified version of the proof that LT} C ﬁg [6]-
The idea is to use two operations in order to reduce the weights: divide them by powers of two and
divide them modulo a prime. The resulting “small”’-weight gates are connected into a circuit that
produces the correct output if enough primes are used.

We have further simplified the results presented in [4] and [6] by limiting ourselves to the simulation
of a particular large weight function: COMPARISON. Our construction has size O(n*logn), a
significant improvement on the general bound of O(n'?log'! n) in [6].

We note that Alon and Bruck have presented a sophisticated construction for the COMPARISON
function in [1], based upon a discrete version of a sparse “delta polynomial” (one that has a large
absolute value for a single assignment and extremely small absolute values for all other assignments).
The construction we present here is considerably simpler, and readily implementable for practical
values of n.

2 LT, Circuit for Comparison

Let X7 and Xy be two n-bit numbers, X1 = z1,23,...,%o_1, Xo = Z2,%4,...,To,, Where z; €

{0,1}, for 1 <4 < 2n. The integer values represented by X; and X, are equal to }." o1
i=1 %21

n
and) - . ..
i—1 T2:2'*, respectively. The COMPARISON function is defined as

1 X1>X,
0 otherwise.

C(X1,X5) :{

In other words,
C(Xl,XQ) = sgn[X1 — XQ]

n
= sgn [Z 2N @gi1 — w2)

i=1

The COMPARISON function has the interesting property that it belongs to LTi, but not to LT).
Using tools from harmonic analysis, it is shown in [11] that COMPARISON is in LT. We provide
an explicit construction of an LTy circuit for COMPARISON, inspired by the method in [6].

Let X = x1,%9,...%2, and let F(X) = Efﬁl w;z; be the linear combination corresponding to
C(Xl,XQ):

F(X) =C(X1,X) =) 2" (wgi1 — 22).
i=1

From F(X) we form a new function F;(X) with weights w} by dividing each weight in half and
rounding down: _f

8
|
Note that the division is equivalent to “left-shifti g” both X; and Xj:

mon-c (3] %)

We repeat this process to form a sequence of functions Fj(X), for 0 <[< n. After n steps, the
division process yields F,,(X) which is identically zero.

FO(X) = T — T2+ 21‘3 — 24+ + 2"‘11‘2”_1 . 2n_1$2n
Fi(X) = @z3—z4+-+2" 239, 1 — 2" %19,

Fo1(X) = Zon-1—Ton
F,(X) = 0.

Lemma 2.1

F(X)>0 = VI:F(X)>0,
F(X)<0 = VI:F(X)<o.

Proof: Note that X X
wan o [B[%

and similarly,

X X
mex o [3]s[%

(see Appendix). The two statements of the lemma follow. O

Lemma 2.2

F(X)>0 & 31:F((X)=1

Proof: Note that the value of COMPARISON can be determined by examining the highest-order
bit position in which X; and X5 differ. (If they do not differ, then the value of COMPARISON is
defined to be zero). Suppose that X; # X, and the highest-order bit in which they differ is the k-th
bit. If the k-th bit of X; is 1 and the k-th bit of X5 is 0, then C (X1, X2) =1 and F(X) > 0. Now,
suppose that we “left-shift” X; and X» by k bits, obtaining X] and X). That is to say, we divide
each of the weights of X; and X» by 2* and take the floor to obtain the corresponding weights of
X{ and X). If F(X) > 0, then Fj(X) = X{ — X} = 1. The lemma follows. O

Example 2.1

Suppose X; =0,1,1,1 (i.e., 14) and X, =0,1,0,1 (i.e., 10). Thus, F(X) = 4.

Fo(X) = 0—0+2(1) —2(1) +4(1) — 4(0) +8(1) — 8(1) = 4
Fi(X) = 1—1+2(1)—2(0)+4(1) —4(1) =2

F(X) = 1-0+2(1)—2(1) =1

F(X) = 1-1=0

Fi(X) = 0

Note that F(X) > 0 and we have V[: Fj(X) > 0. In particular, we have F5(X) = 1.

Define the “test” function for each 0 <[< n as follows:

1 i F(X)=1
T(X) _{ 0 otherwise.
Lemma 2.2 may be expressed as
n—1
F(X)>0 & \/ Ti(X)=1.
1=0

Although trivial in itself, this notation becomes useful when we introduce the idea of computing
modulo prime numbers.

We define the modulus operation to return values in a symmetric interval centered at zero, i.e., for
an integer Z and a positive integer k, let Z mod k = ¢, where t = Z (mod k) and — [%J <t< [%J

4

Given a prime p, define a “test” operation modulo p for each 0 </ < n as follows:

Tp,

_J 1 if Fi(X)modp=1
(X)) = { 0 otherwise.

For a given X € {0,1}?" and a given prime p, suppose that we compute 7}, ;(X) for all functions
F;(X) in the sequence. This would not be sufficient, since the test operation modulo a prime p does
not necessarily give the correct answer. However, the following lemma tells us that if we repeat the
process for enough prime numbers, say r many, then we will obtain the correct answer most of the
time.

Lemma 2.3

Let p1 < p2 < --- be consecutive primes greater than 3. Let s be the minimum integer that satisfies
p1p2 -+ ps > 21 — 1. Then for every integer Z, where |Z| < 2" — 1,

Z=1 = Zmodp; =1 for all primes p; > 3,
Z#1 = Zmodp; =1 for less than 3 - s many primes p; > 3.

Proof: The first statement is trivially true. The second follows from Lemma 2 in [6], based on
the Chinese Remainder Theorem. Note that s = O(nlogn). O

For a given X € {0,1}2” and a set of primes pi,p2,...,pr, suppose that we have an array of
elements that compute T, ;(X) for 1 <i<rand 0 <[<n, ie.,

TplaO(X) Tplal(X) e Tplan_l(X)
Tp250(X) Tp271(X) e TP2,7L—1(X)
Tp‘V‘aO(X) Tp’l‘al(X) e Tpr,n—l(X)

Define a “false” positive to be the event that an element returns a 1 when F(X) < 0. Define a
“true” positive to be the event that an element returns a 1 when F'(X) > 0.

e When F(X) > 0, Lemma 2.2 tells us that 3/ : Fj(X). Thus, there is at least one true positive
per row. Therefore, there are at least r true positives in the array in total.

e When F(X) < 0, Lemma 2.1 tells us that VI : Fj(X) # 1. Thus, Lemma 2.3 tells us that
there are fewer than 3 - s false positives per column. Therefore, there are less than 3-s-n
false positives in the array in total.

If we choose r = 3- s-n, then the number of elements returning 1’s in the case where F(X) < 0 will
always be less than r, whereas the number returning 1’s in the case where F'(X) > 0 will always be
greater than or equal to r. The key here is that the upper bound on the number of false positives
is independent of the number of rows, whereas the lower bound on the number of true positives is
independent of the number of columns.

Example 2.2

For n = 3, F(X) can assume values in the range [—7,7]. The following table shows these values
reduced modulo 5 and modulo 7:

rT|-6|-5|-4|-3|-2|-1|0(1|2|3 4|5 |67
modb |-2|-1|-0]1]|2]|-2]-1 -110)1
mod7|0 (1|2 |3 |-3|-2|-1|0|1]2]|3|-3|-2|-1/|0

S
—
S
N\
b

If we repeatedly reduce a number in the range [1,7] modulo 5 and modulo 7, we eventually get 1 in
both cases. Therefore, at least two test elements return one if F(X) > 0. If we repeatedly reduce
a number in the range [—7, 0] modulo 5 and modulo 7, we may get 1 in one case but not the other.
Therefore, at most one test element returns one if F'(X) < 0.

To obtain a circuit for COMPARISON, we connect the test elements as inputs to an LT gate and
set the threshold of the gate to r. It remains to show how to realize the test elements using a single
layer of thresholds gates with small weights.

The approach is a standard one in threshold circuit theory. For 1 < i < r and 0 <[< n, define
F,,,1(X) to be the linear combination obtained by reducing the weights of F;(X) mod p;. Note that
for each X € {0,1}*",

Tpa(X)=1 & F,;(X)modp=1.
Now F,, ;(X) assumes at most n - p; different values. At most n of these are equal to 1 when taken
modulo p;. Denote the values of Fp, ;(X) that equal 1 when reduced modulo p; as vi,ve,...,vy.
For each v;, 1 < j < n, we place two LT gates in the first layer. Call them Gg-l)(X) and G;Q) (X).

e The weights on the input wires of both Gg-l) and Gg?) are set equal to the corresponding
weights of F), ;(X).

e The thresholds of Gt and G'? are set to v; and v i+1, respectively.
J J j

J
(2)

e The weights on the output wires of Gg-l) and G ;7 are set to 1 and -1, respectively.

Clearly,

Y (G (x) + G (X)) = Ty, (X).

To summarize, we have a total of 3 - s - n? test elements, each of which requires 2 - n LT gates to
realize. Thus, we require 6 - s - n® LT gates in total. Since s = O(nlogn), we conclude that our
construction has size O(n*logn).

3 Final Remarks

We have presented a simple, explicit LT, construction for COMPARISON, a function not in LTj.
The number of gates in our construction, O(n*logn), is a significant improvement on the general

bound of Oﬂu log!'n) in [6]. An interesting direction of further research is to derive the exact
size of the LTy implementation of COMPARISON using the approach presented in [3].

References

1]

[10]

[11]

N. Alon and J. Bruck. Explicit constructions of depth-2 majority circuits for comparison and
addition. In STAM J. Discrete Math, Vol. 7, No. 1, pp. 1-8, 1994.

V. Bohossian and J. Bruck. On neural networks with minimal weights. In Proc. of Neural
Information Processing Systems, No. 8, 1995.

V. Bohossian and J. Bruck. Algebraic techniques for constructing minimal
weight threshold functions. To appear in SIAM J. Discrete Math. Available at
http://www.paradise. caltech. edu/ETR. html.

M. Goldmann and M. Karpinski. Simulating threshold circuits by majority circuits. In SIAM
J. Discrete Math, Vol. 7, No. 1, pp. 230-246, 1998.

J. Hastad. On the size of weights for threshold gates. SIAM. J. Disc. Math., Vol. 7, pp.
484-492, 1994,

T. Hofmeister, A note on the simulation of exponential threshold weights, CONCOON
conference, 1996.

M. Muroga. Threshold logic and its applications. Wiley-Interscience, 1971.

J. Myhill and W. H. Kautz. On the size of weights required for linear-input switching functions.
IRE Trans. Electronic Computers, EC. 10, pp. 288-290, 1961.

A.A. Razborov. On small depth threshold circuits. Proc. 8rd Scandinavian Workshop on
Algorithm Theory, Lecture Notes in Computer Science 621, pp. 42-52, Springer-Verlag, 1992.

J. S. Shawe-Taylor, M. H. G. Anthony, and W. Kern. Classes of feedforward neural networks
and their circuit complexity. Neural Networks, Vol. 5, pp. 971-977, 1992.

K. Siu and J. Bruck. On the power of threshold circuits with small weights. SIAM J. Disc.
Math., Vol. 4, No. 3, pp. 423-435, August 1991.

Appendix

Proof of Lemma 2.1:

We show that x x
wen o [3)[3]

There are four cases to consider.

1. X is even, X, is even:
X X X X
X;>X, = Zi>22 o {—12{—1.

2. X7 is odd, X5 is odd:

X1 2> Xo

3. X; is even, X3 is odd:

X Xo—1 X X
X1>Xy = L > 2 = {JJ > \‘—QJ

4. X; is odd, X3 is even:

Xi1—-1_ X X X
Xi1>Xy = ! >—2 = {JJ > {TZJ

