A Group Membership Algorithm with a Practical
Specification *

Massimo Franceschetti Jehoshua Bruck

California Institute of Technology
Mail Code 136-93
Pasadena, CA 91125
Email: {massimo, bruck}@paradise.caltech.edu

(Revised Version, to Appear in IEEE Trans. Par. & Distr. Sys.)

June 28, 2001

Abstract

This paper presents a solvable specification and gives an algorithm for the Group
Membership Problem in asynchronous systems with crash failures. Our specification
requires processes to maintain a consistent history in their sequence of views. This
allows processes to order failures and recoveries in time and simplifies the programming
of high level applications. Previous work proved that the Group Membership Problem
cannot be solved in asynchronous systems with crash failures. We circumvent this
impossibility result building a weaker, yet non-trivial specification. We show that our
solution is an improvement upon previous attempts to solve this problem using a weaker
specification. We also relate our solution to other methods, and give a classification of
progress properties that can be achieved under different models.

Keywords: distributed agreement algorithms, group membership, asynchronous systems.

*This work was supported in part by the NSF Young Investigator Award CCR-9457811, by the Sloan
Research Fellowship, by an IBM Partnership Award by DARPA through an agreement with NASA/OSAT
and by the Caltech Lee Center for Advanced Networking.

1 Introduction

Distributed systems consist of groups of processes that co-operate in order to complete
specific tasks. A Group Membership Protocol is of particular use in such systems, providing
processes in a group with a consistent view of the membership of that group. In this way,
when a membership change occurs, processes can agree on which of them must complete
a pending task, or start a new task. The problem of reaching a consistent membership
view is very similar to the one of achieving common knowledge in a distributed system,
commonly referred to as the Consensus Problem[39]. The Consensus Problem has been
proven insolvable in asynchronous systems with crash failures [28].

Group Membership differs from Consensus in that the value to be agreed upon, namely
the current membership view, may change due to asynchronous failures. Moreover, while
Consensus requires all non-faulty processes to reach the same decision, Group Membership
usually allows the removal of non-faulty processes from the group when they are erroneously
suspected to have crashed, thus requiring agreement only on a subset of the processes in
the system. Despite these differences, Chandra et al. [17] recently adapted the impossi-
bility result for the Consensus Problem to the Group Membership Problem. At the same
time, they conjectured that techniques used to circumvent the impossibility of Consensus
can be applied to solve the Group Membership Problem. Such techniques include using
randomization [8], probability assumptions on the behavior of the system [13], and us-
ing failure detectors that are defined in terms of global accuracy and completeness system
properties [15].

It must be understood, however, that the impossibility result in this context really
means “not always possible”, as opposed to “never possible”. As a matter of fact, the
Chandra et al. result states that any algorithm that tries to solve the Group Membership
Problem cannot always make progress; there are cases (although very unlikely) in which
the algorithm blocks forever.

The above idea is the basis of Neiger’s [48] approach, he suggests redesigning the problem
by using a specification that is weak enough to be solvable — allowing the algorithm to block
in some cases — but strong enough to prevent trivial implementations. His specification
uses a weak progress requirement, allowing executions in which even a single process crash
and its attempted removal from the membership may forever block all processes.

Our approach follows Neiger’s intuition. We propose a specification that requires pro-
cesses to install a new membership whenever they share a new view of the system connectiv-
ity. This requirement is weak, because if no set of processes agrees on the connectivity, no
progress is made. The requirement is, however, stronger than the one proposed by Neiger,
in that it implicitly states that removal and rejoining of any process must be allowed.

We summarize our contributions as follows: we identify the main assumptions required
for proving the impossibility of Group Membership in asynchronous systems and relax one
of them, namely the progress requirement, to break this result. Thus, we propose a weak,
but not trivial, specification and a corresponding algorithm that solves this specification.
Both specification and algorithm have the advantage of being simple. The specification
we propose requires agreement on a sequence of views, that we call the consistent history
requirement. Qur consistent history definition requires that processes agree on the order in
which the membership changes. This turns out to be a useful feature for many applications

(see for example the discussion in [22]). The specification also allows partitions to occur,
and requires to maintain a consistent history within such partitions. Possible inconsistencies
arising from partitioning may be solved in different ways: by using a primary partition mech-
anism based on a majority or quorum of processes [30] [38], by relying on network topologies
resilient to partitions [37], or by implementing extended virtual synchrony [9] [46], using
appropriate algorithms to merge the states when partitions are rejoined. Our algorithm,
based on a standard three phase commit protocol, is fully distributed. It does not extend
the asynchronous model of concurrent computation to include global failure detectors, and
it can tolerate any number of removals and rejoining of processes. Progress of the algorithm
can be easily guaranteed in practice in real world systems.

The rest of the paper is organized as follows. Section 2 discusses related work; Section 3
describes our model; Section 4 formally defines the specification; Section 5 relates our
solution to other methods; Section 6 describes the protocol; Section 7 proves its correctness,
and Section 8 draws conclusions and discusses some future work.

2 Historical Background

The Group Membership Problem first originated in a paper by Birman and Joseph [10].
Since then, a large amount of work has been done, in the context of synchronous [18],
asynchronous under both a primary partition [4] [17] [29] [33] [41] [45] [48] [50] and a
partitionable model [1] [2] [7] [24] [31] [34], and timed-asynchronous [19] [20] [21] [22] [26]
[27] systems. A recent survey of these works appears in [54].

In general, specifications developed under asynchronous models are usually complex and
many are difficult to understand. It appears that different protocols provide significantly
different guarantees about their services, and are based on different assumptions of the
system’s behavior. Some specifications deal with more than just membership and views,
and also consider message services with different ordering and reliability properties, as in [6]
[7] [10] [25][27] [34]. Such specifications are known as Group Communication Services. This
paper does not consider such extensions, but focuses on Group Membership alone.

As indication of how challenging specifying and implementing asynchronous membership
algorithms is, widely cited research articles that attempt to give formal specifications for the
primary partition and partitionable asynchronous membership problem [50] and [24], as well
as their updated versions [25] [49] [51], contain some flaws in their formalisms. Anceaum
et al. [3] showed that algorithms in [49] [50] and [51] allow undesirable executions and the
specifications in [24] and [25] can be satisfied by trivial protocols.

Most of the difficulties in building a specification for the Group Membership Problem
arise from the impossibility results in [17] and [28]. These results built a gap between group
membership protocols that work in real systems — some of which have been around for many
years, anticipating more theoretical results— and the formal specifications that they satisfy.
Examples of such real systems that run group membership protocols are Amoeba [33] [52],
Isis [11], Transis [23], Totem [47], Horus [53], Relacs [5], and more recently Phoenix [40]
and RAIN [12]. Researchers developing these systems are, of course, aware of the original
impossibility result [28] and of its potential application to their membership protocols [17],
but they also believe that their systems can work under assumptions that can easily be

verified in practice. This motivates the study of formal specifications that are solvable in
completely asynchronous settings. Yet, despite the wide interest it has attracted and the
number of publications on this subject, it appears that currently there is no specification
that is at the same time simple, practical, and does not rely on any extension to the
asynchronous model of computation (e.g. the existence of global failure detectors).

Our work tries to fill this gap.

3 The Model

We consider an asynchronous distributed system, where processes communicate by exchang-
ing messages. Processes are identified by unique id’s. The asynchronous model of execution
of concurrent processes follows the one described in [35]. The communication model follows
the one described in [32]. Every pair of processes is connected by a communication channel.
That is, every process can send messages to and can receive messages from any other. We
assume processes are able to probe a communication channel for incoming messages, using a
boolean primitive as defined in [42]. Communication channels are considered to be reliable,
FIFO, and to have an infinite buffer capacity. Message transmission and node processing
times are finite but unpredictable, that is no upper or lower bounds are assumed on the
execution speeds of the processes or on the delays experienced by messages in transit.

The failure model allows processes to crash, silently halting their execution. Because
of the unpredictable delays experienced by the system, it is impossible to use time-outs
to accurately detect a process crash. A process that has been infinitely slow for some
time and has been unresponsive to other processes may become responsive again at any
time. Therefore, processes can only suspect other processes to have crashed, using local
failure detectors. Local failure detectors are assumed to be inaccurate and incomplete.
That is, local failure detectors may erroneously suspect that other, operational processes
have crashed, or that crashed processes are operational. Since local failure detectors run
independently on each process, one local failure detector may perceive a failure, but other
detectors may perceive it at a different time, or not at all.

We assume that a process communicates with its local failure detector through a special
receive-only channel, on which the local failure detector may place a new list of id’s of
processes not suspected to have crashed. We call this list the local connectivity view of
the process. Each process considers the last local connectivity view received from its local
failure detector as the current one.

We can summarize our model as follows:

e Sequential processes exchange messages on FIFO reliable channels with unbounded
buffering capability and unpredictable delay, following the CSP specification in [32].

e Probes for incoming messages described in [42] extend the model in [32].

e The failure model includes process crashes. Local failure detectors inform processes
of suspected changes in connectivity through special unidirectional communication
channels.

4 Group Membership Specification

Each process p maintains two fundamental data structures: a set v,, containing the current
local connectivity view, and an infinite sequence S, = [Vp1, Vp2, ... Vi - - -] of global views.
Initially all but the first view in S, are empty, the first view being the initial state of the
system. The problem is to extend the sequence of non-empty views, based on changes in
the local views, and to do so consistently at different processes. Local connectivity views
may change independently and arbitrarily at different processes, according to messages from
local failure detectors. Sequences S, must be extended at different processes maintaining a
consistent global history in the sequence.
We define consistent history as follows:

Definition 1 Consistent History. A set of processes has a consistent history of views, if
sequences S), are the same at all processes, unless views V,; and V;; are disjoint. Namely:

ConsistentHistory =Vp,q,5 (Vp; = V) V (Vp; N V4 = 0)

where p and g are process id’s and Vj; and V;; are the j-th elements in p’s and ¢’s global
sequences of views, respectively.
We define a quiescent state as follows:

Definition 2 Quiescent State. A process p is in a quiescent state if it does not change
its sequence of global views anymore. Namely:

QuiescentState, = O(S), = :9;)

where 3’; is a constant sequence of views, and O is the always or henceforth operator [35],
the notation OA meaning that A holds at all time points after the reference point.

We make some remarks regarding the definitions above.

A quiescent state is stable, in the sense that once a process reaches a quiescent state, it
stays in that state forever.

Consistent history requires all processes to have the same sequence of views, except
for processes that were part of disjoint memberships (i.e. memberships that excluded each
other); such processes are allowed to maintain the disjoint parts of their histories when
they are connected again. Moreover, consistent history does not require processes that were
excluded from all memberships and then readmitted to some membership, to have in their
sequence views in which they did not participate.

We now define a specification, consisting of four properties, for a group membership
algorithm. We assume the system to be initialized to a start state where the sequences S,
are the same at all processes, and the last non-empty views in their sequences are the ones
reported by all failure detectors.

Property 1 Agreement. At any point in time all processes have a consistent history.
True = O(ConsistentHistory)

Property 2 Termination. If there are no more changes in the local views of the pro-
cesses, they eventually reach their quiescent states

(Vp O(vp = 0p)) = (Vp O(QuiescentState,))

where each 7, is a constant set, and < is the sometime or eventually operator [35], the
notation & A meaning that there is a time point after the reference point at which A holds.

Property 3 Validity. If all processes in a view v* perceive view v* as their local view,
and they have reached their quiescent states, then the last non-empty elements of their
sequences of global views are all at position 7, and must be equal to v*.

(Vp € v*O(QuiescentState, Nv, =v")) = (Fj | (Yp€v™(j = max kENAVpi =0")))
pk#D

Property 4 Safety. Once a view is “committed” in the sequence of global views, it cannot
be changed.
Vp,j (Vp; = v* #0) = D(Vy; =v7))

The first property expresses agreement. Consistent history must be an invariant for any
program that satisfies the specification.

The second property expresses termination. When the inputs of all processes are stable,
the processes are eventually going to stop changing their output sequences.

The third property rules out trivial solutions where protocols never decide on any new
view or always decide on the same view. It ensures that a protocol that satisfies the
specification does something useful, by stating that when all processes in a set agree on
such set, they must commit this common view at the same position j in their sequences
of global views. Note that this requirement is weak, because a new membership is created
only if the local views of the different processes in the membership reach agreement.

The fourth property also rules out trivial solutions, requiring processes not to change
old views in their sequences.

5 Circumventing the Impossibility Result

In this section, we relate our specification to other ways to solve the group membership
problem, summarized in Table 1.

e In an asynchronous model augmented by global failure detectors, processes have access
to modules that (by definition) eventually reflect the state of the system. Therefore,
progress can be guaranteed unconditionally.

e In a timed asynchronous model, processes must react to an input, producing the cor-
responding output or changing state, within a known timebound. Under this model,
progress can be guaranteed if no failures and recoveries occur for a known time needed
to communicate in a timely manner.

e In a completely asynchronous model, progress cannot always be guaranteed and failure
detectors in practice eventually reflect the system state, but they must be considered
arbitrary. Correct processes react in practice within finite time, but this time can-
not be quantified. Therefore, in order to guarantee a solution, we need a weaker
specification of the problem.

Global Failure Detectors | Timed Asynchronous Completely Asynchronous
Unconditional Progress | Conditional Timeliness | Weak Progress

Table 1: Classification of Progress Properties under Different Models

Our approach falls into the last category that originated with Neiger’s work [48]. Our
specification, however, differs from Neiger’s in several ways.

e Processes in Neiger’s model do not need to wait for convergence in their local views
to change their membership. If one process suspects that another failed, it may
attempt to remove the suspect process. Neiger’s specification says that if one process
attempts to remove another, they will eventually not be in the same membership.
Our specification requires all processes in a set to agree on that set before changing
their membership.

e Neiger’s specification allows a solution in which the attempted removal of a single
process blocks all processes. Our specification does not allow such a single point of
failure, because it states that if all processes in a set agree on such set, they must
eventually commit such set.

e Finally, Neiger’s specification does not consider processes rejoining the group. It states
that the membership changes only by processes leaving the group. Our specification
allows removal and rejoining of any number of processes.

We now relate our solution to the other methods quoted in table 1.

In a timed asynchronous model, processes must react to an input, producing the corre-
sponding output or changing state, within a known timebound. Progress under this model
is achieved if there are no failures or recoveries in the system for an a priori known du-
ration. This implies a certain amount of synchronism, which is absent from our totally
asynchronous model.

Global Failure detectors strengthen the asynchronous time-free model, based on the
observation that the system eventually stabilizes: this essentially implies that, after a “suf-
ficiently long” time, failure detectors are accurate and complete, thus reflecting the actual
system state. In our model stability is also required for progress; but, at variance of the
above case, it is not necessarily related to the state of the system. In other words, eventual
progress is required when there is agreement among a subset of the local failure detectors,
even if failures and recoveries continue to occur in the system.

If our local failure detectors do not necessarily reflect the system state, because they are
inaccurate and incomplete, how is it possible to require progress in a group that agrees on
a wrong connectivity? For example, if processes p1, p2 and p3 agree on the view {p1,p2,p3},
but process ps has stopped and cannot communicate with p; and ps, how can p3 commit the
view {p1,p2,p3}? There are two answers to this question. First, p3 may remain stopped for a
while (or just be infinitely slow) and may become responsive again at any time. In this case,
if the three processes do not change their local view and since channels are reliable, all three
will be able to commit the view {p1,p2,p3} when communication with ps is restored. This

is enough to guarantee eventual progress. Second, if p3 has crashed permanently (consider
for example turning off a computer), it does not have a local view and does not agree on the
view {p1,p2,ps}. Therefore the specification does not require the two remaining processes
to commit such view.

In practice, local failure detectors are typically implemented using timeouts and “heart-
beats” and are at least complete, if not accurate, since all crashed processes eventually time
out. In the example above, the permanently crashed process ps would be timed out by the
remaining two processes and those processes would be able to commit the view {pi,p2}.
However, in our specification we ignore global properties of failure detectors and consider
their reports to be as random inputs.

6 Group Membership Algorithm

We provide an algorithm that solves the Group Membership Specification given in Section 4.
The algorithm is based on the three asynchronous phases depicted in Figure 1.

e A preparation phase, in which a process proposes a new view that matches the view
of the other processes.

e A ready phase, in which all processes that agree on the new view acknowledge the
reservation of a position in their sequence of global views to commit such view.

e A commit phase, in which the new view is finally installed, and the sequences S}, of
global views are extended consistently at different processes.

Prepare Ready Commit

Time

Figure 1: Phases of the algorithm

6.1 Solution Sketch

The main idea for the algorithm is as follows: a process p that is informed by its local
failure detector of a change in its local connectivity view and that has the smallest id
among processes in its new local connectivity view, sends a message to all processes in its
view, proposing to update the current membership with the new view. Each process records
this proposal until its local view is the same as the proposed view, at which point it responds

Figure 2: Channels and data structures

by sending back an Accept or Retry message to the process that proposed the membership
update. The Accept message is sent if the process agrees on the proposed group index,
namely on the position in its sequence S, where to place the new view. Upon sending the
Accept message, the process reserves the corresponding position in its sequence Sy, so that
no other proposal is accepted for that group index. Upon receiving a Retry message, the
proposing process restarts the first phase of the algorithm, sending a new Propose message
to all processes in its view, this time with a new group index. When the proposing process
has collected Accept messages from all processes in its view, it starts the commit phase, by
sending Commit messages, ordering other processes in its view to commit the membership
update. Upon receiving a commit message, processes extend their sequences .S, accordingly.

6.2 Channels and Data Structures

Our communication model is depicted in Figure 2. A process p is connected to a process g
through a send channel SN, and a receive channel R,. Process p also has a receive channel
named local, coming from its local failure detector.

The local view of process p is stored in the variable v,. A global view that has been
committed by process p at position 7 in its sequence S, of global views is represented by V.
The index Nezt of process p always points to the first position in the sequence S, where a
new view can be committed. The remaining local variables of process p are summarized in

Table 2.

6.3 CSP Notation

We specify our algorithm using Hoare’s CSP [32]. A full description of our notation and its
semantics can be found in [43] and [44]. What follows is a short summary of the notation
we use.

Variables of process p

p

Up

Vi

Next

v *
PropOut
Proplg
PropIn[q]

vlg]
ack|q|
old, new, view, 1

self index

local view

global view at position

next available position to commit a view
view of most recent proposal sent
index of most recent proposal sent
whether g proposed a view

index proposed by ¢

view proposed by ¢

whether ¢ has accepted p’s view
temporary variables

Table 2: Variables of process p

e Statements:

— Assignment: a :=b.

— Send: X'e means send the value of e over channel X.

— Receive: Y 7v means receive a value over channel Y and store it in variable v.

— Probe: The boolean expression X is true iff a Receive statement over channel X

can complete without suspending.

e Control Structures:

— Selection: [G1 — Si]]--.[|Grn — Sp], where G;’s are boolean expressions (guards)
The execution of this command corresponds to
waiting until one of the guards is true, and then executing one of the statements

and S;’s are program parts.

with a true guard.

— Repetition: The notation *[S] means repeat S forever.

— Sequential execution: S; T.

— Parallel execution: S || T'.

— Parameterization: The notation ([]g.qerrS) means: Sg1 [|Sg2 [|Sg3 - - ., where Sg;
is the program part S with ¢ replaced by the ith member of the set U. The

notation ¢ :: is a shorthand for ¢ : ¢ € {set of all processes}.

6.4 Code Description

The code is shown in Figure 3. The first guarded command in Figure 3 shows how a process
p, when informed of a change in its local connectivity view, checks if it has the minimum
id among the processes in v,. If p has the minimum 4d, it proposes to extend the sequence
of global views at position PropOut with the view v,, by broadcasting v, and PropOut to

all processes in vy, and it initializes its ack array to zero.

10

*[[local — local?(vp);
[p = min(vy) — PropOut := PropOut + 1;

*

v = vp;
(|lg:geo* SNy!Propose(v*, PropOut));
(llg:: acklq] := 0)

[| else — skip
]

0 Qg
R, — R,7m;
[m.type = Propose— (v[q], PropIn[q]) := m;
Proplq] := true

[| m.type = Retry— (old,new) := m;
[PropOut = old \ p = min(vp,) — PropOut := new;
(llg:qev, SNgy!Propose(vy, PropOut));
(llg:: acklq] := 0)
[| else — skip
]

[| m.type = Acc— i :=m;
[PropOut =i — acklq] :=1
[| else — skip

]

[Vg:qev-ack[q] =1 — (||g:qevr SNylCommit (v*, PropOut)) ;
(llg:: acklg] == 0)

[| else — skip

]

[| m.type = Commit— (view,i) := m;
Vpi = view

]

[| Proplg] A (vlg] = vp) — Proplq] := false;
[PropIn[q] < Next — SNy !Retry(PropIn[q|, Next)
[| PropInlq] > Next — Next = PropIn[q] + 1;
SNy !Acc(PropIn[q))

]

Figure 3: The algorithm

11

The second guarded command in Figure 3 checks for incoming messages from other
processes. These may be proposals for a new membership (Propose), invitations to retry
proposing a membership with a new group index (Retry), acceptances of a proposed mem-
bership (Acc), or orders to commit a new membership (Commit).

Upon receiving a proposal message from process ¢, process p stores the view proposed
by ¢ at position g of the array v, and stores the proposed group index at position ¢ of the
array PropIn, then sets position ¢ of the array prop to true, to record the receipt of the
proposal from gq.

If process p later agrees on the proposed view, it sends a response to process g (see last
guarded command in Figure 3). The response is either an acceptance of the view v[q] at
position PropInlq|, if the next available slot of process p to commit a view is at a position
that is less or equal than the proposed index PropIn|g]; or it is an invitation to retry, with
a different index, if the next available slot of process p is at a position that is greater than
the proposed index. An invitation to retry consists of sending back to g the proposed index
and the current next available index, to be used for the retry. An acceptance consists of
acknowledging the proposed view at position PropIn[q]. Following an acceptance, process
p also increments its index Next to the value PropIn[g] + 1, in order not to accept any
other proposal for that position.

We now examine the guarded commands of the remaining message types.

A process p that receives an invitation to retry its proposal, receives two indices, old
and new. The former is the one p has sent in the proposal, the latter is the one p will use
in its next proposal. If index old is equal to the index of the most recent proposal sent by
process p, and process p still has the minimum ¢d among the processes in its local view, it
proposes to extend the sequence of global views at the new position new, with the view vy,
and it re-initializes the ack array to zero.

A process p that receives an acceptance regarding its proposed view, receives an index
1. If 4 is equal to the index of the most recent proposal sent, process p sets the element at
position ¢ in the array ack to 1 to record the acceptance. Then it inspects the ack array
to check if all entries are 1. If so, p starts the commit phase by broadcasting its previously
proposed view v* and the corresponding proposed index PropQOut to all processes in v* and
it re-initializes the ack array to zero.

A process p that receives an order to commit a view at position ¢ from process ¢, simply
sets the view at position 7 of its sequence of global views to the received view.

6.5 Local Failure Detectors Implementation

Our algorithm relies on an implementation of the local failure detectors that satisfies the
following property:

e Given any pair of processes p and ¢, every time p suspects ¢ failed, it cannot un-suspect
q, until ¢ has also suspected p failed.

Note that such an implementation does not introduce any global property in the failure
detection mechanism. In fact, it does not relate suspected failures to actual failures in the
system in any way.

12

Start /\;

tout/1

T/l

T/l

T/0
t: token count

T: token arrival event
tout: time-out event

trigger event / token sent

Figure 4: State machine for process p’s local view of process q.

It is easy to implement local failure detectors that fulfill this requirement. In particular,
an implementation of a very simple protocol for this kind of local failure detectors is reported
in [12] and [36], and its state machine description is depicted in Figure 4. Instead of
replicating this state machine into the CSP description of our algorithm, we assume to have
incorporated it within the local failure detector implementation.

The state machine depicted in Figure 4 shows process p’s local view of process q. It
shows the reaction to ty,; events and T' (token-receipt) events by process p that is at one
end of the communication channel to process q. The protocol consists of two parts:

e First, we have the sending and receiving of tokens, using reliable messaging. Tokens
are sent whenever process p sees a state transition over the channel to process g, i.e.,
it suspects or un-suspects process q.

e Second, we have an (unreliable) hint from the underlying system, such as a time-out,
that indicates that communication to process g has (perhaps) been lost.

In Figure 4, each state is characterized by whether process p considers process ¢ to be Up
or Down, and by how many tokens are held by process p. The state transitions are labeled
by the action triggering the transition and by the action taken upon transition. A trigger
event is either a time-out %4, or receipt of a token T'. The action taken is always whether
the token is sent (1) or not (0). Note that a token 7T is sent whenever a transition for an
Up state to a Down state or from a Down state to an Up state is made.

6.6 Example

In order to clarify the behavior of the overall algorithm, we show the following example.
Let us consider the four processes system depicted in Figure 5 as a complete graph with

four nodes. Initially (step (a) of Figure 5), all four nodes have the same view sequence

S = {Vv1,{0},{0},{0},... } with V; = {1,2,3,4}. Suppose node 1 is disconnected from the

13

(f)) (h)

(—()
C)

Figure 5: Example

network and suppose that local failure detectors of different nodes discover the failure at
different times, reporting the connectivity views represented in steps (b) through (d).

At Step (b), node 1 suspects 2 has failed and node 2 suspects 1 has failed. Accordingly,
at Step (b), both nodes 1 and 2 have the minimum id among their local views. Therefore,
node 2 proposes the new membership v = {2,3,4}, tagged with group index i = 2 , while
node 1 proposes v = {1, 3,4}, also tagged with group index i = 2. At Step (b) nodes 3 and
4 do not send any response, because their local views are still v = {1,2,3,4}.

At Step (c), node 1 suspects 2 and 3 have failed and nodes 2 and 3 suspect 1 has failed.
Accordingly, at Step (c), node 1 proposes v = {1,4}, tagged with group index 7 = 3, while
node 3 accepts the view v = {2,3,4} proposed by node 2 at Step (b). Finally, at Step (d),
node 4 also accepts the view v = {2, 3,4} proposed by node 2 at Step (b), while node 1
proposes and commits the singleton view v = {1} at position i = 4.

By Step (d), node 2 has collected Accept messages from all nodes it sent its proposal
to, therefore it is able to start the commit phase. Suppose that the Commit message sent
to node 4 is delayed (Step (e)), so that nodes 2 and 4 suspect each other to have failed.
Therefore, by Step (e) the sequences of views at the different nodes are:

o Node 1. § = {{1,2,3,4},{0}, {0}, {1},{0}, {0}, {0},... }
e Nodes 2,3. S ={{1,2,3,4},{2,3,4}, {0}, {0}, {0},... }
e Node 4. § = {{1,2,3,4},{0}, {0}, {0},... }

Now suppose that node 1 is reconnected to the system (steps (f) and (g)). Accordingly,
node 1 proposes v = {1, 3,4} with group index 5 at step (f), while node 2 proposes v = {2, 3}
with group index 3. Node 3 does not respond to any these proposals, because its local view
is v =1{1,2,3,4}. Node 4, sends an Accept message to node 1, regarding the new proposed
view v = {1, 3,4} at position 5, but the commit phase does not start for this view. Node 1

14

then proposes v = {1,2, 3,4} with group index 6 at step (g). Node 3 accepts this proposal
at Step (g); nodes 2 and 4 accept it at Step (k). Node 4 also receives the delayed commit
message from node 2 at Step (h). By Step (h), node 1 has collected Accept messages from
all the nodes it sent its proposal to, therefore it starts the commit phase. Supposing node 1
completes the commit phase at Step (h), the final sequences of views at the different nodes
become:

e Node 1. § = {{1,2,3,4},{0}, {0}, {1}, {0}, {1,2,3,4},{0}, {0}, {0},... }
e Nodes 2,34. S ={{1,2,3,4},{2,3,4}, {0}, {0},{0}, {1,2,3,4}, {0}, {0}, {0},... }

7 Correctness

Correctness of the algorithm is ensured by proving that it satisfies the four properties of
the specification given in Section 4.

7.1 Agreement

Theorem 1 The algorithm described in Section 7 satisfies the agreement condition of the
specification (Property 1, Section 4): at any point in time, all processes have a consistent
history.

Proof of Theorem 1. Either all processes remain in the start state, or some process p
extends its sequence S, of global views. In the start state the consistent history property
holds. If some process p extends its sequence S, by committing a new view v* at a given
position %, it must have received a Commit message from some process ¢, therefore ¢ must
have received Accept messages, regarding its proposal of v* at position 7, from all processes
in v*, including p. It follows from the last guarded command in Figure 3, that if process p
has accepted the proposal of process ¢, it has also increased its Next variable to the value
of 141, and will not accept any other proposal for that position. Therefore, process p either
commits view v* at position 4, or ends up with position ¢ of its sequence of global views
empty. The consistent history property follows. O

7.2 Termination

Theorem 2 The algorithm described in Section 7 satisfies the termination condition of the
specification (Property 2, Section 4): all processes eventually reach a quiescent state, if there
are no more changes in their local views.

Proof of Theorem 2. By contradiction, a non-quiescent state means that the sequence
of global views is extended infinitely often at some process, therefore an infinite number of
Commit messages must be sent. Since the number of processes is finite, there must be at
least one process that sends infinitely many Commit messages. Call this process p. By the
code in Figure 3 we see that each time p sends a commit message, it re-initializes its ack
array to 0. It follows that, in order to send infinitely many Commit messages, process p
must re-fill the array with 1’s, infinitely often. Since each process sends at most one Acc

15

message for each proposal, process p must send infinitely many proposals. Proposals are
sent either when there is a change in the local view, or because of an invitation to retry
has been received (see Figure 3). The first case is ruled out, because it implies that process
p changes its local view infinitely often, and by hypothesis there are no more changes in
the local views of the processes. The second case is also ruled out, because it implies
that process p sends infinitely many proposals of the same view, each time increasing the
proposed index. Since the number of processes is finite, and there are no more changes in
their local views, process p must eventually propose an index large enough, that does not
generate any Retry messages, leading to the desired contradiction. O

7.3 Validity

Theorem 3 The algorithm described in Section 7 satisfies the validity condition of the spec-
ification (Property 3, Section 4): if all processes in a view v* perceive view v* permanently
as their local view, and if they have reached their quiescent states, then they must have
installed view v* at position j, as the last non-empty element of their sequences of global
Views.

Proof of Theorem 3. Let all processes in v* perceive view v* permanently as their
local view. We first show that when the processes change their local views to v*, process
p = min(v*) proposes view v*. We distinguish two cases:

e Case 1. All processes in v* always perceive p as not failed. In this case, since
p = min(v*), the only process that can ever send a proposal is process p. Moreover,
by the assumption on the behavior of the local failure detectors (see Section 6.5), p
can never suspect any ¢ € v* and then perceive v* again. It follows that either p
proposes v* by excluding some process that is not in v*, or p never proposes v*, in
which case v* must be the initial view of all processes in the system.

e Case 2. There is at least a process g € v* that perceives a transition from considering
p failed to considering p not failed. In this case, by the assumption on the local failure
detectors (see Section 6.5), p must suspect g before ¢ un-suspects p. It follows that,
to perceive v*, p must at some time perceive a transition to un-suspect ¢, and propose
a view letting ¢ join the group. The last process g for which process p perceives such
a transition makes p send a proposal for view v*.

When process p sends a proposal for view v*, and all processes in v* agree on such view, the
proposal is either accepted or an invitation to retry is sent by some process back to process
p. Since for every Retry message received, process p sends a new proposal for v*, with a
larger proposed index, and since the local views of all processes are stable, process p must
eventually propose an index that is large enough to be accepted by all processes in v*, and
therefore must eventually send Commit messages to all processes in v*. It follows, that by
the time they reach a quiescent state, all processes in v* have installed view v* at the same
position in their sequences of global views. O

16

7.4 Safety

Theorem 4 The algorithm described in Section 7 satisfies the safety condition of the speci-
fication (Property 4, Section 4): once a view is “committed” in the sequence of global views,
it cannot be changed.

Proof of Theorem 4. Every time a process sends an Acc message, regarding a view at
a given position %, it increases the value of its Next variable to ¢ + 1, therefore, it will not
accept any other proposal for position 7, making it possible to commit at most a single view
at position 7. O

8 Conclusion

We have presented a specification for the Group Membership Problem in completely asyn-
chronous systems, and a corresponding algorithm that solves it.

Our specification requires processes to maintain a consistent history in their sequence
of views. This allows processes to order failures and recoveries in time and simplifies the
programming of many high level applications (see for example the discussion in [22]).

We have assumed our local failure detectors to be inaccurate and incomplete. With this
approach, the specification states explicitly that progress cannot always be guaranteed.

In practice, our requirement for progress is weaker than that stated in the specification
of having a set of processes sharing the same connectivity view indefinitely. In fact, if
the rate of perceived failures in the system is lower than the time it takes the protocol to
make progress and commit a new membership, then it is possible for the algorithm to make
progress every time there is a failure in the system. This depends on the actual rate of
failures and on the capacity of the failure detectors to track such failures.

Reference [15] notes that failure detectors defined in terms of global system properties
cannot be implemented. This result gives strength to the approach of relaxing the specifi-
cation and of having a protocol in continuous search for convergence. In real world systems,
where process crashes actually lead a connected cluster of processes to share the same con-
nectivity view of the network, convergence on a new membership can be easily reached in
practice.

In the presence of partitions, our protocol does not attempt to solve inconsistencies
in the history of views of processes that commit disjoint memberships. Therefore, two
processes that partition and evolve separately as part of different components maintain
separate histories in their view sequences. This information may be used later by other
algorithms to place a total order on the memberships of the whole network.

We believe that the weak liveness approach, introduced by Neiger [48], and expanded
here, can be generalized to other agreement problems in asynchronous systems.

9 Acknowledgments

The authors would like to thank prof. A. J. Martin and his student Robert Southworth, who
helped formalize the problem and gave suggestions on how to specify the code using CSP;

17

Michael Gibson, who read a previous version of the manuscript and made useful comments
to improve the presentation; and all the anonymous referees for their constructive criticism.

Extra thanks are due to the anonymous referee who pointed out an error in a previous

version of the paper that allowed us to simplify the algorithm; and to Matthew Cook, for
reviewing the final version of the manuscript.

References

1]

[10]

Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal and P. Ciarfella. “The Totem
Single-Ring Ordering and Membership Protocol”. ACM Transactions on Computer
Systems 13-4 pp. 311-342, November 1995.

Y. Amir, D. Dolev, S. Kramer and D. Malki. “Membership Algorithms for Multi-
cast Communication Groups”. Proceedings of the Sizth International Workshop of Dis-
tributed Algorithms (Lecture Notes in Computer Science 647), pp. 292-312, November
1992.

E. Anceaume, B. Charron-Bost, P. Minet and S. Toueg. “On the Formal Specification
of Group Membership Services”. Technical Report 95-1534, Computer Science Depart-
ment, Cornell University, August 1995.

T. Anker, G.V. Chockler, D. Dolev and I. Keidar. “Scalable Group Membership Ser-
vices for Novel Applications”. Proceedings of the Workshop on Networks in Distributed
Computing (DIMACS 45), pp. 23-42, AMS, 1998.

O. Babaoglu, R. Davoli, L. Giachini and M. Baker. “Relacs: A communication Infras-
tructure for Constructing Reliable Applications in Large-Scale Distributed Systems”.
Proceedings of Hawaii International Conference on Computer System Science. Vol. 2,
pp. 612-621, 1995.

O. Babadglu, R. Davoli and A. Montresor. “Failure Detectors, Group Membership and
View Synchronous Communication in Partitionable Asynchronous Systems”. Technical
Report UBLCS-95-18, Computer Science Department, University of Bologna, Italy,
November 1995.

O. Babaoglu, R. Davoli and A. Montresor. “Group Communication in Partitionable
Systems: Specifications and Algorithms”. Technical Report UBLCS-98-01, Computer
Science Department, University of Bologna, Italy, October 1999.

M. Ben-Or. ” Another Advantage of Free Choice: Completely Asynchronous Agreement
Protocols”. Proceedings of the Second ACM Symposium on Principles of Distributed
Computing, ACM Press, pp. 27-30, August 1983.

K. Birman. “Building Secure and Reliable Network Applications”. Manning Publica-
tions Co. 1996.

K. Birman and T. Joseph. “Reliable Communication in the Presence of Failures”. ACM
Transactions on Computer Systems, 5-1 pp. 47-76, February 1987.

18

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

K. Birman and R. van Renesse. “Reliable Distributed Computing with the ISIS
Toolkit”. IEEE Computer Society Press, 199/.

V. Bohossian, C. Fan, P. LeMahieu, M. Riedel, L. Xu and J. Bruck. “Computing in
the RAIN: A Reliable Array of Independent Nodes”. IEEE Transactions on Parallel
and Distributed Systems, 12-2 pp.97-113, February 2001.

G. Brancha and S. Toueg. ”Resilient Consensus Protocols”. Proceedings of the Sec-
ond ACM Symposium on Principles of Distributed Computing, ACM Press, pp. 12-26,
August 1983.

R. Carr. “The Tandem Global Update Protocol”. Tandem Systems Review, June 1985.

T. D. Chandra and S. Toueg. “Unreliable Failure Detectors for Reliable Distributed
Systems”. Journal of the ACM 43-2 pp. 225-267, March 1996.

T. D. Chandra, V. Hadzillacos, S. Toueg. “The Weakest Failure Detector for Solving
Consensus”. Proceedings of the Eleventh ACM Symposium on Principles of Distributed
Computing, ACM Press, pp. 147-158, August 1992.

T. D. Chandra, V. Hadzillacos, S. Toueg and B. Charron-Bost. “On the Impossibility
of Group Membership”. Proceedings of the Fifteenth ACM Symposium on Principles
of Distributed Computing, ACM Press, pp. 322-330, May 1996.

F. Cristian. “Reaching Agreement on Processor Group Membership in Synchronous
Distributed Systems”. Distributed Computing, 4 pp. 175-187, April 1991.

F. Cristian. “Probabilistic Clock Synchronization”. Distributed Computing, 3 pp. 146-
158, 1989.

F. Cristian. “Synchronous and Asynchronous Group Communication”. Communica-
tions of the ACM, 39-/ pp. 88-97, 1996.

F. Cristian and C. Fetzer. “The Timed Asynchronous Distributed System Model”.
IEEFE Transactions on Parallel and Distributed Systems, 10-6 pp. 642-657, June 1999.

F. Cristian and F. Schmuck. “Agreeing on Processor Group Membership in Timed
Asynchronous Distributed Systems”. Technical Report CSFE95-428, Computer Science
Department, University of California at San Diego, 1995.

D. Dolev and D. Malki. “The Transis Approach to High Availability Cluster Commu-
nication”. Communications of the ACM, 39-4 pp.64-70, 1996.

D. Dolev, D. Malki and R. Strong. “An Asynchronous Membership Protocol that Toler-
ates Partitions”. Technical Report CS594-6, Computer Science Department, The Hebrew
University of Jerusalem, Israel, 1994.

D. Dolev, D. Malki and R. Strong. “A Framework for Partitionable Membership Ser-
vices”. Technical Report CS95-4, Computer Science Department, The Hebrew Univer-
sity of Jerusalem, Israel, 1995.

19

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

C. Dwork, N. Lynch and L. Stockmeyer. “Consensus in the Presence of Partial Syn-
chrony”. Journal of the ACM, 85-2 pp. 288-323, 1988.

A. Fekete, N. Lynch and A. Shvartsman. “Specifying and Using a Partitionable Group
Communication Service”. Proceedings of the Sizteenth ACM Symposium on Principles
of Distributed Computing, ACM Press, pp. 53-62, August 1997.

M. J. Fischer, N. A. Lynch and M. S. Paterson. “Impossibility of Distributed Consensus
with One Faulty Process”. Journal of the ACM 32-2 pp. 374-382, April 1985.

M. Franceschetti and J. Bruck. “On the Possibility of Group Membership”. Proceed-
ings of the IEEE Workshop on Fault Tolerant Parallel and Distributed Systems. San
Juan, Puerto Rico, April 1999. Published in D.E. Avresky Editor, Dependable Network
Computing, Chapter 4, pp.77-92, Kluwer Academic.

S. Jajodia and D. Mutchler. “Dynamic Voting for Maintaining the Consistency of a
Replicated Database”. ACM Transactions on Database Systems 15-2 pp. 230 - 280,
June 1990.

F. Jahanian, S. Fakhouri and R. Rajkumar. “Processor Group Membership Protocols:
Specification, Design and Implementation. Proceedings of the Twelfth Symposium on
Reliable Distributed Systems, October 1993.

C.A.R. Hoare. “Communicating Sequential Processes”. Communications of the ACM
21-8 pp. 666-677, 1978.

F. Kaashoek and A. Tanenbaum. “Group Communication in the Amoeba Distributed
System”. Proceedings of the Eleventh International Conference on Distributed Com-
puting Systems, pp. 222-230, May 1991.

I. Keidar, J. Sussman, K. Marzullo and D. Dolev. “A Client Server Oriented Algorithm
for Virtually Synchronous Group Membership in WANSs”. Proceedings of the twentieth

International Conference on Distributed Computing Systems. Taipei, Taiwan, April
2000.

F. Kroger. “Temporal Logic of Programs”. Springer Verlag, 1987.

P. LeMahieu and J. Bruck. “A Consistent History Link Connectivity Protocol”. Pro-
ceedings of the Seventeenth ACM Symposium on Principles of Distributed Computing,
ACM Press, p. 309, July 1998 (extended abstract). Full version paper appeared in the
Proceedings of the Thirteenth International Parallel Processing Symposium (IPPS 99),
pp. 138-142, April 1999.

P. LeMahieu, V. Bohossian and J. Bruck. “Fault-Tolerant Switched Local Area Net-
works”. Proceedings of the Twelfth International Parallel Processing Symposium (IPPS
98), pp.747-751, April 1998.

E. Y. Lotem, I. Keidar and D. Dolev. “Dynamic Voting for Consistent Primary Com-
ponents”. Proceedings of the Sizteenth ACM Symposium on Principles of Distributed
Computing, ACM Press, pp. 63-71, August 1997.

20

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

N. Lynch. “Distributed Algorithms”. Morgan Kaufman, 1996.

C.P. Malloth, P. Felher, A. Shiper and U. Wilhelm. “Phoenix: A Toolkit for Building
Fault-Tolerant Distributed Applications in Large Scale Networks”. Proceedings of the
Workshop on Parallel and Distributed Platforms in Industrial Products. San Antonio,
Tezas, October 1995.

C.P. Malloth and A. Shiper. “View Synchronous Communication in Large Scale Dis-
tributed Systems”. Proceedings of the Second Open Workshop of the ESPRIT Project.
Grenoble, France, July 1995.

A.J. Martin. “The Probe: An Addition to Communication Primitives”. Information
Processing Letters 20 pp.125-130, 1985.

A.J. Martin. “Compiling Communicating Processes into Delay-insensitive VLSI cir-
cuits”. Distributed Computing, 1-4, pp.226-234, 1986.

A.J. Martin. “Programming in VLSI: From Communicating Processes to Delay-
Insensitive Circuits”. C.A.R. Hoare Editor, Developments in Concurrency and Com-
munication, Chap. 1, Addison Wesley, 1990.

P.M. Melliar-Smith, L. E. Moser and V. Agrawala. “Processor Membership in Asyn-
chronous Distributed Systems”. IEEE Transactions on Parallel and Distributed Sys-
tems, 5-5 pp. 459-473, May 199.

L. E. Moser, L.E. Amir, P.M. Melliar-Smith and D. A. Agarwal. “Extended Virtual
Synchrony”. Proceedings of the Fourteenth IEEE International Conference on Dis-
tributed Computing Systems, pp. 55-65, June 199/.

L. E. Moser, P.M. Melliar-Smith, D. A. Agarwal, R. K. Budhia and C. A. Lingley-
Papadopoulos. “Totem: A Fault Tolerant Multicast Group Communication System”.
Communications of the ACM, 39-4 pp. 54-63, 1996.

G. Neiger. “A New Look at Membership Services”. Proceedings of the Fifteenth ACM
Symposium on Principles of Distributed Computing, ACM Press, pp. 331 - 340, May
1996.

A. M. Ricciardi. “The Group Membership Problem in Asynchronous Systems”. Ph.D.
Thesis, Department of Computer Science, Cornell University, 1993.

A. M. Ricciardi and K. Birman. “Using Process Groups to Implement Failure Detec-
tion in Asynchronous Environments”. Proceedings of the Tenth ACM Symposium on
Principles of Distributed Computing, ACM Press, pp. 841-352, May 1991.

A. M. Ricciardi and K. Birman. “Process Membership in Asynchronous Environments”.
Technical Report, Department of Computer Science, Cornell University, 1995.

A. Tanenbaum, R. van Renesse, H. Vanstaveren, G. J. Sharp, S. J. Mullender, J. Jansen
and G. Vanrossum. “Experiences with the Amoeba Distributed Operating System”.
Communications of the ACM 33-12 pp. 46-63, December 1990.

21

[53] R. van Renesse, K. Birman and S. Maffeis. “Horus: A Flexible Group Communication
System”. Communications of the ACM, 39-4 pp. 76-83, 1996.

[54] R. Vitenberg, I. Keidar, G. Chockler and D. Dolev. “Group Communication Specifi-
cations: A Comprehensive Study”. Technical Report CS99-381, Institute of Computer
Science, The Hebrew University of Jerusalem, September 1999.

22

Massimo Franceschetti was born in Naples, Italy, and received his education in Italy,
U.K., and U.S.A. He received the Laurea degree, magna cum laude, in computer engineering,
from University of Naples, Italy, in June 1997. During his studies he spent one semester
at the University of Edinburgh, U.K., as a visiting student, thanks to a fellowship by
the Students Award Association of Scotland. He received the MSc degree in electrical
engineering from the California Institute of Technology in June 1999. He is currently a
Ph.D. student in electrical engineering at the California Institute of Technology, advised by
Dr. Bruck. He is a recipient of the 1999 UPE/IEEE Computer Society award for academic
excellence, and of the 2000 Caltech Walker von-Brimer Foundation award for outstanding
research initiative. His research interests include mathematical models of wireless networks,
applied probability, and fault tolerant distributed computing.

Jehoshua Bruck received the B.Sc. and M.Sc. degrees in electrical engineering from
the Technion, Israel Institute of Technology, in 1982 and 1985, respectively and the Ph.D.
degree in electrical engineering from Stanford University in 1989. He is the Moore Professor
of Computation and Neural Systems and Electrical Engineering at the California Institute of
Technology. His research interests include parallel and distributed computing, fault-tolerant
systems, error-correcting codes, computation theory and biological systems. Dr. Bruck has
an extensive industrial experience, including, with IBM for ten years both at the at the IBM
Almaden Research Center and the IBM Haifa Science center. Dr. Bruck is a co-founder
and Chairman of Rainfinity, a spin-off company from Caltech that is focusing on providing
software for high performance reliable Internet infrastructure. Dr. Bruck is the recipient of
a 1997 IBM Partnership Award, a 1995 Sloan Research Fellowship, a 1994 National Science
Foundation Young Investigator Award, six IBM Plateau Invention Achievement Awards, a
1992 IBM Outstanding Innovation Award for his work on “Harmonic Analysis of Neural
Networks” and a 1994 IBM Outstanding Technical Achievement Award for his contributions
to the design and implementation of the SP-1, the first IBM scalable parallel computer. He
published more than 150 journal and conference papers in his areas of interests and he holds
22 patents. Dr. Bruck is a Fellow of the IEEE.

23

