Coding for Tolerance and Detection of Skew in Parallel
Asynchronous Communications *

Mario Blaum Jehoshua Bruck T
IBM Research Division California Institute of Technology
Almaden Research Center Mail Stop 136-93
650 Harry Road Pasadena, CA 91125, USA
San Jose, CA 95120, USA bruck@paradise.caltech.edu

blaum@almaden.ibm.com

Abstract

We provide a new definition for the concept of skew in parallel asynchronous com-
munications introduced in [2]. The new definition extends and strengthens previously
known results on skew. We give necessary and sufficient conditions for codes that can
tolerate a certain amount of skew under the new definition. We also extend the results
to codes that can tolerate a certain amount of skew and detect a larger amount of skew
when the tolerating threshold is exceeded.

1 Introduction

In [2], the concept of skew in parallel asynchronous communications was introduced. We
repeat here some of the basic definitions and the problem description. For details, the reader
is referred to [2].

Assume that we have n parallel channels, and we can transmit transitions in each one of them.
A transition represents a one, while the absence of a transition represents a zero. When the
sender transmits a vector of length n, he sends transitions in the channels corresponding to
ones in the vector. The transitions arrive at the other end randomly and asynchronously.
The receiver sees a sequence 7 = x1,%9, T3, ..., where x; € {1,2,...,n} indicates that the
1-th transition has arrived in channel z;. For instance, assume that n = 5, the transmitter
sends the vector 11100 (possibly followed by other vectors) and the receiver sees the sequence

*Partially presented at the IEEE International Symposium on Information Theory (ISIT’98), MIT, Cam-
bridge, MA USA, August 1998

TSupported in part by the NSF Young Investigator Award CCR-9457811, by an IBM Partnership award
and by a Sloan Research Fellowship.

~

Z =2,3,1,.... This means that the first transition arrived in channel 2, the second one in
channel 3, and the third one in channel 1. At that point, the receiver decides that vector
11100 was transmitted. How does he know that he does not need to wait for more transitions
to arrive? This problem is solved by using unordered codes [6]. For instance, constant weight
codes are unordered codes. Two binary vectors of length n are unordered when their supports
(i.e., sets of non-zero coordinates) are unordered. A code is unordered when every pair of
distinct codewords is unordered.

Unordered codes are a good solution to the problem of parallel asynchronous communications
when there is no skew between the transmitted codewords. We say that there is skew in the
transmission when transitions not belonging to the current codeword arrive before transmis-
sion of the current codeword has been completed. For instance, like in the previous example,
assume that 11100 was transmitted, but the receiver sees the sequence Z = 2,3,4,1,....
Therefore, the third transition arrives in channel 4 and does not belong in the current code-
word, whose support is {1,2,3}. Another manifestation of skew is through repeated arrivals.
For instance, in the same example, if the receiver sees the sequence Z = 2,3,2,1,..., the
third transition gives a repeated arrival in channel 2. Again, skew has occurred, since the
third transition does not belong in the current codeword.

How to avoid skew? The obvious solution is, based on the probabilistic arrival model, to
space enough in time the transmission intervals between unordered codewords such that
the probability of skew is extremely low. Alternatively, a back channel between receiver and
sender may be implemented such that an acknowledgment is sent from receiver to sender once
the current codeword has been received. As soon as the sender sees the acknowledgment, he
transmits the next codeword. The advantage of these two solutions is that they are easy to
implement and unordered codes have fairly low complexity. The disadvantage is that waiting
times may be long, and acknowledgment does not allow for pipelined transmission.

An alternative to long transmission intervals and to acknowledgment is to allow a certain
amount of skew to occur, and to use codes (and a decoding algorithm) that are capable of
tolerating that amount of skew. This has the advantage of reducing the interval of transmis-
sion and to allow for pipelined utilization of the channel. However, the codes will be more
complex than mere unordered codes, and also the decoding algorithm will have to make more
checks than verifying if, after arrival of a transition, the resulting vector belongs in the code
or not. But before finding adequate codes, we need a precise definition of skew. In [2], we
used two parameters, t; and 9, to characterize the skew of a codeword X with respect to a
received sequence 7. The parameter t; represents the number of transitions remaining in X
when a transition not in X arrives (by a transition not in X, we include repeated arrivals).
The parameter t5 represents the number of transitions not in X arriving before reception
of X is complete. In this case, we say that the skew of X with respect to Z is (t1,ts) (a
(0,0)-skew indicates no skew).

For example, assume that n = 5, as above, X = 11100 is the transmitted codeword, and the
receiver sees the sequence 7 = 1,4,3,2,.... As we can see, the second transition arrives in
channel 4, which does not belong to X. Thus, there are two transitions left in X when this
transition not belonging in X arrives, therefore, t; = 2. Similarly, since only one transition

not belonging in X has arrived before reception of X is completed (and this occurs when
the fourth transition in channel 2 arrives), then ¢, = 1. So, we say that the skew of X with
respect to Z is (2,1).

This brings us to the following question: is there something we can do to tolerate skew?
Can we characterize in terms of distance, codes that can tolerate skew not exceeding (t1,t3)?
The answer is yes, and the problem was solved in [2].

Before stating the main theorem in [2], we need some notation. We say that a code C is
(t1,ty)-skew tolerant (ST) if, given a transmitted codeword X (possibly followed by other
codewords) and a received sequence 7 , such that the skew of X with respect to Z does not
exceed the parameters ¢; and 9, then, by examining Z , the receiver can correctly conclude
that X was the transmitted codeword.

Given two vectors X and Y, we denote by N(X,Y) the number of locations where X is
1 and Y is 0. For instance, if X = 11100 and Y = 00110, we have, N(X,Y) = 2 and
N(Y,X) = 1. Notice that N(X,Y) > 0 and X =Y if and only if N(X,Y)=N(Y, X)=0.
Clearly, N(X,Y)+ N(Y, X) = dg(X,Y), where dy denotes Hamming distance. Also, notice
that if N(X,Y) = 0, then the support of X is contained in the support of Y, and we say
that X is contained in Y. A pair of vectors X and Y is unordered if and only if N(X,Y) >0
and N (Y, X) > 0. The main result in [2] is the following:

Theorem 1.1 Let C be a code, then C is (t1,t,)-ST if and only if, for every pair of distinct
codewords X and Y with N(X,Y) < N(Y, X), at least one of the following two conditions
oceurs:

2. N(X,Y)>1and N(Y, X) >t +t,+ 1.

For a proof of this result together with a decoding algorithm, see [2]. Observe that the
characterization of ST codes given by Theorem 1.1 is symmetric on #; and 5.

One of the purposes of this paper is presenting a new definition of skew, that depends on one
parameter only. We then will give and prove necessary and sufficient conditions for codes
tolerating the single parameter skew. We will show that the new definition of skew is more
natural than the one depending on two parameters, and we will show the connection between
the new results and the old ones.

The new definition of skew is roughly as follows: assume, as usual, that a vector X is
transmitted and the sequence Z is received. Once the last transition in X arrives, we look
at previous arrivals in Z and we count how many transitions have arrived since the first
transition not belonging in X has arrived. This number will be called the skew of X with
respect, to 7 , and will be denoted by S(X; 7). For instance, in our canonical example, we
had that X = 11100 and Z = 1,4,3,2,... was received. We see that the second transition
arrives in channel 4, thus, it does not belong in X. Reception of X is completed when the
fourth transition arrives in channel 2. Looking back, there were a total of two transitions

since the first transition not in X has arrived, so, the skew of X with respect to Z is 2. With
the new notation, S(X; Z) = 2.

In general, we will say that a code C is t-skew-tolerant (ST) if, whenever X € C is transmitted,
possibly followed by other codewords, and Z is received such that S (X; Z) < t, then, by
examining Z , the receiver can correctly determine that X was the transmitted codeword.
In the next section we give precise mathematical definitions of the new concept of skew, and
we prove the necessary and sufficient conditions for codes to be t-ST. In Section 3, we extend
the concept to codes that can tolerate skew up to ¢, and detect skew when the skew exceeds
t but not £t + s. We end the paper with some conclusions.

2 Skew-Tolerant Codes

In this section, we present formally the concepts discussed in the previous section.

Notice that binary vectors can be represented by their supports. In the sequel, we will
represent binary vectors either by their natural vector representation or by their supports,
without an explicit distinction between the two.

Let X be a subset of {1,2,...,n}. Let 7 = x1,T9,73,... be a sequence, where each x; €
{1,2,...,n}. Let Z,, C {1,2,...,n} be the set {x1,29,...,z,} (remember that in a set,
repeated entries are equivalent to single entries). Let

r(X;Z) = min{m:X C Z,} (1)

In words, r(X; Z) denotes the index of the arrival of the last transition in X. For instance, in
our canonical example, we had that X = 11100 and 7 = 1,4,3,2,... was received. Therefore,
since the last transition in X to arrive is the fourth transition, we have that r(X; Z) =4.
When the context is clear, we denote r = r(X; Z) If Z,, # X for all m, we define r = oc.
Next we give a formal definition of skew.

Definition 2.1 Assume that X is the transmitted vector and Z the received sequence. We
define the skew of X with respect to Z as ¢, denoted S(X; Z) = t, as follows:

1. If r =|X]|, then £ = 0 (i.e., no skew).

2. If | X| < r < oo, then t is the largest such that:

(a) ZT—(H—I) - Xa and
(b) either #, & X or x, 4 € Z,_(141).

3. If r = o0, then t = 0.

Let us look more closely at Definition 2.1. The first condition says that Z, = X and, since
|X| = r, there are no repeated arrivals. Thus, no skew has occurred. The second condition
reveals the presence of skew: since | X | < r, then either some transition not in X has arrived
before reception of X is completed, or we had a repeated arrival. Notice that transitions
1,2,...,7 — (t+ 1) are all in X, while transition r — ¢ is either not in X or it is a repeated
arrival. When transition r — ¢ arrives, it is either a repeated arrival or it does not belong in
X. Skew has occurred and the magnitude of this skew is given by the number ¢. The third
condition simply defines the skew as infinite when X is never received.

The next example illustrates Definition 2.1.

Example 2.1 Let X = {1,2,3} C {1,2,3,4,5,6}.

If Z=3,1,2,3,4,5, ..., then, since | X| =3 =7r, S(X; Z) = 0.

If Z=1,2,4,3,4,3,.... then |X| =3 <4=r. Since Zy y={1,2} C X and 7, ; =4 & X,
then S(X;Z) = 1.

If Z = 1,1,2,4,3,6,..., then | X|=3<5=r. Since Z5 y, ={1} C X and 25 3=1€ Z5 4,
then S(X:; Z) = 3.

Next, we define skew-tolerant codes.

Definition 2.2 Let C={X,Y,...} be a code. We say that C is t-skew tolerant (ST) if, for
each X € C and sequence Z such that S(X;Z) <t, then S(Y;Z) >tforallY € C,Y # X.

Definition 2.2 means that if X is a transmitted codeword followed by other codewords, 7
is the received sequence and S(X; 7) <'t, then, by examining Z the receiver can correctly
conclude that X was the transmitted codeword. This correct identification occurs when the
r-th transition arrives, i.e., when Z, is examined.

Now, what is the relationship between ¢-skew as given by Definition 2.1 and (#1, t2)-skew as
defined in [2]? Observe that if X is a transmitted codeword followed by other codewords, Z
is the received sequence and the skew of X with respect to Z when defined by two parameters
is equal to (t1,t9), then S(X; Z) =1t +ty — 1. Explicitly,

Corollary 2.1 Let C be a t-ST code. Then, C is (t1,t2)-ST for each ¢y, t5 such that t; +t5 <
t — 1. In particular, if a code is (2t — 1)-ST, it is also (¢,¢)-ST, and a code is 1-ST if and
only if it is (1,1)-ST.

The following theorem is one of our main results. It gives necessary and sufficient conditions
characterizing ¢-ST codes. Its proof will be a special case of the proof of the forthcoming
Theorem 3.2, which gives more general conditions for codes combining skew-tolerance and
skew-detection.

Theorem 2.1 A code C is ¢-ST if and only if, for every X, Y € C, X #Y, with N(X,Y) <
N(Y, X), the following condition is satisfied:

NX,Y)>1 and 2N(X,Y)+ N(Y,X) >2t+3 (2)

(@

Below we give some examples of the conditions that codewords in a ¢-ST code C satisfy for
1 <t < 3 according to Theorem 2.1. In all cases, we assume that X, Y € C, X # Y and
N(X,Y) < N(Y, X).

C is 1-ST if and only if
1. N(X,Y)=1and N(Y,X) > 3; or

2. N(X,Y) > 2.

C is 2-ST if and only if
1. N(X,Y)=1and N(Y,X) > 5; or

2. N(X,Y) >2and N(Y, X) > 3.

C is 3-ST if and only if
1. N(X,Y)=1and N(Y,X) > T; or
2. N(X,Y)=2and N(Y,X) > 5; or
3. N(X.Y) > 3.

Connecting Theorems 1.1 and 2.1, we can obtain a stronger version of Corollary 2.1 when
tl 7£ YL/Q. EXphCltly

Corollary 2.2 Let t1,ty > 1 and max{ty, %o} + 3min{ty,t5} — 2 < 2¢. Then, if a code C is
t-ST, it is also (ty,t5)-ST.

Proof: Assume that C is t-ST, and t1,ty > 1, max{t1,ty} + 3min{ty, to} — 2 < 2. Since
Theorem 1.1 is symmetrical on ¢; and ¢, we may assume that t; > o, therefore
th+ 3ty —2 < 2t (3)

Let X,Y € C with N(X,Y) < N(Y,X). We have to show that at least one of the two
conditions in Theorem 1.1 is satisfied. If N(X,Y) > ¢+ 1, then condition 1 in Theorem 1.1
is satisfied, so assume that

N(X,Y) <ty (4)

Thus,

NY,X) > 2t—2N(X,Y)+3
Z (tl + 3TL/Q - 2) — 2t2 +3 (bY (3) and (4))
> 41+ 1
Thus, X and Y satisfy condition 2 in Theorem 1.1, completing the proof. O

For instance, a 3-ST code is (1,5)-ST, (2,2)-ST and (5,1)-ST. This looks like a paradox. How
can a 3-ST code be (1,5)-ST if a skew equal to (1,5) corresponds to a skew equal to 57 The
answer is, a (1,5)-ST code can tolerate skew not exceeding (1,5), but not other types of skew,
like a skew equal to (2,2), which corresponds to a skew equal to 3.

We next give a decoding algorithm for #-ST codes. We will prove in the Appendix that
the algorithm correctly decodes the transmitted codeword when condition (2) is satisfied for
every pair of distinct codewords in the code.

Algorithm 2.1 (Decoding Algorithm for ¢-ST Codes) Let the received sequence be
Z =T1,T9,...,T4.... Then:

RESET: Set the initial conditions <0, X<, B—0, W0 and {z;} =0 for j <O0.
START: Set i«—i+ 1 and W« (W — {mi,(tﬂ)}) U{xi 1}
If z; € X then:
If |B| =t or x; € B, then declare an uncorrectable error and STOP.
Else, set BB U {z;} and go to START.
Else, set X«—X U {z;}.
If X —A¢gC for any A C W — B then go to START.
Else, output X — A, where ACW — Band X — A €C.
If AU B € C, then output AU B and set A« and B«().
Set ZA%Ijl, Tjyy ooy Ty, Tit1, Tita, - .., where {z;,,2j,,..., x5} = AU DB,
J1<J2 <...<Js and go to RESET.

Let us look more closely at Algorithm 2.1. The index 7 counts the new arrivals and the set
X registers the incremental vectors. The set W represents a buffer storing the last ¢ arrivals,
if any. At step START, a new arrival x; is registered. Then, the oldest arrival is discarded
from the buffer W and the arrival previous to the current one is incorporated into W. The
set B keeps track of the repeated arrivals, if any, while the set A attempts to find those
transitions that are not in the current codeword.

The main step of the algorithm checks, for each received z;, if the set Z; minus one of the
2t=1B] subsets of {xie, i @-1),..., 71} — B (including the empty set) is in the code C.
When and if it does, then the resulting vector is given as output of the algorithm, the set
AU B is reserved as the initial arrivals of the next codeword and the process is restarted.

7

As we mentioned above, the proof of the if part of Theorem 2.1, is a special case of the if
part of Theorem 3.2, to be given in Section 3. We end this section with an example of the
execution of Algorithm 2.1.

Example 2.2 Consider the code C={X,Y,Z}, where X = 111110000 = {1,2,3,4,5},
Y = 000001000 = {6} and Z = 001110111 = {3,4,5,7,8,9}. Since N(X,Y) = 5 and
NY,X)=1, NX,Z)=2and N(Z,X)=3and N(Y,Z) =1 and N(Z,Y) = 6, code C is
2-ST. Assume that the following sequence has been received:

Z=2,1,6,5,4,4,7,3,9,5,8,3,....

The following table gives the execution of Algorithm 2.1:

i | 7 2, | X | w | B| A X—-A | Output
0]2,1,6,5,4,4,7, 0 0 0 0 0
.9.5,8,3,...
1 2 {2} 0 0 0 {2}
2 1 {2,1} {2y | 0 0 {2,1}
{2} {1}
3 6 {2,1,6} {2,1} | 0 0 {2,1,6}
{1} {2,6}
{2} {1,6}
{2,1} {6} 000001000
0] 2,1,5,4,4,7, 0 0 0 0 0
3,9,5,8,3,...
1 2 {2} 0 0 0 2
2 1 {2,1} {2} 10 0 {2,1}
{2} {1}
3 5 {2,1,5} 2,1} 0 0 {2,1,5}
{1} {2,5}
{2} {1,5}
{2,1} {5}
4 41 {2,1,5,4} [{1,5}] 0 0 {2,1,5,4}
{5} {2,1,4}
{1} {2,5,4}
{5,1} {2,4}
5 41 {2,1,5,4} [{5,4} [{4}
6 71 {21,547} | {4} [{4}] 0 {2,1,5,4,7}
7 31{2,1,5,4,7,3} [{4, 7} [{4} 0 [{2,1,5,4,7,3}
{7y | {2,1,5,4,3} | 111110000

i | Z | 2 | X | W |[B] A | X-A4 | Output
0[4,7,9,5,8,3,... 0 0 [0] 0]
1 4 {4} 0 10| 0 {4}
2 7 {4,7} {4 (0| 0 {4,7}
{4} {7}
3 9 479y [{477]0] 0 {4,7,9}

{7} {4,9}
{4} {7,9}

4,7} {9}

4 5| {4,795} [{n.9)|0| © {4,7,9,5}
{9} {4,7,5;
{7} {4,9,5}

{7.9} {4,5}

5 8| {4,7,9,5,8F [{9,5}[0 | @ | {4,7,9,53}
{5} {4,7,9,8}
{9} {4,7,5,8}
{9,5} {4,7,8}
6 3074,7,9,5,8,3 [{58 [0 | @ [{47,9,5,38,3}|001110111

Let us remark that Algorithm 2.1 deals with skew between adjacent codewords only. How-
ever, the conditions are more general: the skew can come from any codeword as long as the
t constraint is not broken. In order to correct skew coming from non-adjacent codewords,
we have to modify slightly Algorithm 2.1, by taking into account repeated arrivals coming
from non-adjacent codewords. In its present form, Algorithm 2.1 stops and declares an un-
correctable error when a repeated arrival appears more than once. For simplicity, we omit
here the complete algorithm.

3 Skew-Tolerant and Skew-Detecting Codes

In this section we extend the results of the previous section to codes that can detect skew
and also to codes that can simultaneously tolerate and detect skew when the threshold of
skew-tolerance is exceeded. We start with some definitions.

Definition 3.1 Let C={X,Y,...} be a code. We say that C is s-skew detecting (SD) if, for
each X € C and sequence Z such that S(X;Z) < s, then S(Y;Z) > 0forallY € C,Y # X.

Definition 3.1 states that when a codeword X is transmitted, possibly followed by other
codewords, giving a received sequence Z, then, by examining Z, if there is no skew of X
with respect to Z, ie., S(X, Z) = 0, then X will be correctly decoded; but if there is skew
not exceeding s, i.e., 0 < S(X, Z) < s, then there is no codeword different from X that
can be given as output of the decoder. In fact, the skew will be detected when we have a
repeated arrival.

Codes that are (si, s2)-SD were studied in [2]. Again, here we are replacing both parameters
with only one. The next theorem characterizes s-SD codes.

Theorem 3.1 A code C is s-SD if and only if C has minimum distance d > s + 2 and it is
unordered.

Unordered error-correcting codes were studied in [3]. We refer the reader to that paper for
efficient constructions. Theorem 3.1 is a special case of the forthcoming Theorem 3.2.

The next step is studying codes that can tolerate a skew not exceeding ¢, and that can detect
a skew exceeding ¢ but not £+ s. In [4], codes that are (¢1,%5)-ST (f; + s1,t2 + $2)-SD were
studied. Again, our purpose is obtaining similar results by using our new definition of skew.

Definition 3.2 Let C={X,Y,...} be a code. We say that C is t-skew tolerant (+ s)-skew
detecting (t-ST (t + 5)-SD) if, for each X € C and sequence Z such that S(X;7) <t + s,
then S(Y;Z) >tforallY € C, Y # X.

Notice that Definition 3.2 extends Definitions 2.2 and 3.1. In effect, a t-ST code is a t-ST
(t 4+ 5)-SD code with s = 0, while an s-SD code is a t-ST (¢ 4+ s)-SD code with ¢t = 0. The
following theorem characterizes t-ST (£ + s)-SD codes.

Theorem 3.2 A code C is t-ST (t + s)-SD if and only if, for any X,Y € C, X # Y, with
N(X,Y) < N(Y, X), either
I<NX)Y)<t+1 and 2N(X,Y)+ N(Y,X) > 2t + s+ 3, (5)

or

NX,)Y)>t+2 and N(X,)Y)+N(Y,X)>t+s+2. (6)
We prove Theorem 3.2 in the Appendix.
Notice that, when s =0, conditions (5) and (6) become
I<NX,)Y)<t+1 and 2N(X,Y)+ N(Y,X) > 2t + 3,

or

NX,)Y)>t+2 and N(X,Y)+N(Y,X)>t+2.

The second one is equivalent to 2N(X,Y) + N(Y, X) > t+2+ N(X,Y) > 2t + 4, so
conditions (5) and (6) reduce to condition (2) in Theorem 2.1.
On the other hand, making £ =0, they give

10

N(X,Y)=1 and 2N(X,Y)+N(Y,X)>s+3,

or

N(X,Y)>2 and d=N(X,Y)+N(Y,X)>s+2.

The first one of these equations gives N(X,Y) =1 and
d=N(X,Y)+N(Y,X)>s+3—-N(X,Y)=s+2, so both of them reduce to the condition
in Theorem 3.1. Thus, Theorem 3.2 in fact generalizes Theorems 2.1 and 3.1. Below are two
examples of the conditions of ¢-ST (¢ 4 5)-SD codes according to Theorem 3.2. In all cases,
X, YelC X#Y and N(X,Y) < N(Y, X).
C is 1-ST 5-SD (i.e., t=1, s=4) if and only if

1. N(X,Y)=1and N(Y,X) >7; or

2. N(X,Y)=2and N(Y,X) > 5; or

3. N(X,Y) >3 and N(Y, X) > 4.

C is 2-ST 8-SD (i.e., t=2, s=6) if and only if
1. N 11; or

2. N 2 and N

| \/

| \/

(Y, X) >
(¥, X)
(¥, X)
4. N (Y, X) >

Y

(X,Y)=
(X,Y)=
3. N(X,Y)=3and N
(X,Y)=
5. N(X,Y)

We can connect t-ST (t 4 5)-SD codes with (1, t2)-ST (1 + s1, 2 + $2)-SD codes similarly to
Corollary 2.2. Since the necessary and sufficient conditions for (t1,t9)-ST (14 s1, o+ s2)-SD
codes are quite complicated [4], we omit this result.

In order to construct t-ST and t-ST (f 4 d)-SD codes, we can use unordered error-correcting
codes [3], or the more sophisticated results of [5]. However, better constructions might be
obtained by fully using the conditions of Theorems 2.1 and 3.2.

11

4 Conclusions

We studied the problem of pipelined transmission in parallel asynchronous communications
allowing a certain amount of skew. We gave a new definition of skew depending on only one
parameter, as opposed to previous definitions depending on two parameters. We presented
necessary and sufficient conditions for codes tolerating a certain amount of skew under the
new definition. We extended the results to simultaneous tolerance and detection of skew.
More research is needed to construct efficient skew-tolerant and skew-detecting codes under
the new definition of skew.

Acknowledgement: We wish to thank Tom Verhoeff for his numerous comments and
suggested improvements.

5 Appendix

Proof of the “only if” part of Theorem 3.2: Assume that code C is ¢-ST (t + 5)-SD
and take X,Y € C, X # Y, such that N(X,Y) < N(Y, X). Given an arbitrary set S, let S
denote a sequence of elements of S transmitted in some order (with no repeated arrivals).
Observe first that X and Y must be unordered (i.e., N(X,Y) > 1). Otherwise, if X C Y, and
the sequence Z = X,Y is received, then, according to Definition 2.1, S(X, Z) =0=38(Y, Z),
therefore the receiver cannot decide which vector was transmitted first, whether X or Y.
This contradicts the assumption that C is t-ST (¢ 4 s)-SD (Definition 3.2).

Next define the following sets: C=X NY, A=X —Y, and B=Y — X. Notice that
|A|=N(X,Y) and |B|=N(Y, X). Observe also that

dy(X,Y)=N(X,Y)+ NY,X)>t+s+2. (7)

In effect, if the sequence Z = C, A, B is received, then, according to Definition 2.1, S (X, Z)=0
and S(Y, Z)=|A|+|B| - 1=N(X,Y)+ N(Y,X) — 1. Since C is t-ST (¢ + s)-SD, according
to Definition 3.2, we must have N(X,Y)+ N(Y,X) —1 >t + s+ 1, proving (7).

In order to prove condition (5), assume that 1 < N(X,Y) <t+ 1. By (7),

|IB| > t+s— N(X,Y) + 2, thus, we can partition B as B= B; U By, where B; N By =)
and |By|=t+ s — N(X,Y) + 1 (thus, |Bs| > 0 and By # 0). If B;=0, then s=0 and
NX,Y)=t+1 < NY,X). Thus, 2N(X,Y)+ N, X) > 2(t+ 1)+ (t +1) > 3t + 2,

~

satisfying (5) when s =0. So, assume that B; # () and the following sequence Z is received:

7 = C,By,A B,,... (8)

According to Definition 2.1 and (8),

12

S(X;:Z)=|B|+|A|—1=(t+s—N(X,Y)+ 1)+ N(X,Y) -1 =t+s, (9)

while

S(Y;Z)=|A|+ |By] —1=N(X,Y) + |By| — 1. (10)

Since C is t-ST (t + s)-SD, by (9), (10) and Definition 3.2, we must have that
N(X,Y)+|By|—1>1t+1,or, |By] >t—N(X,Y)+2. Therefore, using this result together
with the cardinality of By, we obtain

N(Y, X)

| Bl =[Bi| + | By
(t+s—NX.Y)+1)+(t—-NX,Y)+2)
= 2t+s+3-2N(X,Y),

v

proving condition (5).

In order to prove condition (6), assume that |A|=N(X,Y) > ¢t + 2. We can partition A as
A=A UA) with Ay N Ay=0, |A)|=t and |As|=N(X,Y) —t (in particular, A; # 0 and
Ay # 0). Moreover, let b € B (notice that |B| > |A| > 2, thus, B — {b} # 0).

Assume that the following sequence Z is received:

Z = C,Ayb Ay, (B={b}),... (11)
According to Definition 2.1 and (11), S(X; Z) =|A;|=t, while
S(Y;Z)=|A|+|B|—-1=N(X,Y)+ N(V,X) -1 (12)
Since C is t-ST (¢ + s)-SD and S(X;Z)=t, by Definition 3.2, S(Y;Z) > t + s + 1 and,
by (12), condition (6) follows, completing the proof of the necessary conditions. 0

In order to prove the “if” part of Theorem 3.2, we will assume that we are using Algorithm 2.1
for the decoding. We start with two lemmas and then we use them to prove the theorem
itself.

Lemma 5.1 Assume that X and Y are distinct codewords in a code C and there is a
0 < j <t such that

N(X,Y)<j+1 and N(Y,X) <2(t—j)+s. (13)

Then, X and Y do not satisfy conditions (5) or (6).

13

Proof: Notice that X and Y cannot satisfy (6), since min{ N(X,Y), N(Y, X)} < j+1 < t+1.
So, assume first that N(X,Y) < N(Y, X). Then,

INX,)Y)+NY, X) < 2+ +2(t—j)+s=2t+5+2,

so X and Y cannot satisfy (5).
Assume next that N(X,Y) > N(Y, X), therefore, by (13), in particular N(Y, X) < j. This
fact, together with (13), give

2NY, X)+ N(X,Y) = NY,X)+NY, X))+ N(X,Y)
< QE-J+s)+i+0+1D)
= 2t+s+1,

so X and Y cannot satisfy (5) in this case either. O

Lemma 5.2 Assume that X and Y are distinct codewords in a code C and there is a j >t
such that

N(X,Y)<j+1 and N(Y,X)<t+s—j (14)
Then, X and Y do not satisfy conditions (5) or (6).

Proof: Assume first that min{N(X,Y), N(Y, X)} > ¢t + 2. Then, condition (5) cannot
occur, and, by (14),

NXY)+NY, X) <@+ +({t+s—j)=t+s+1,

so condition (6) cannot occur either.
So, assume that min{N(X,Y), N(Y,X)} < ¢+ 1, then, condition (6) cannot occur. If
N(X,Y) < N(Y,X), since t —j <0, by (1) vvehave7

IN(X,Y)+NY, X)<2(t+1)+(t+s—7j) <2t +s5+2,

so condition (5) cannot occur. So, assume that N(X,Y) > N(Y, X), thus N(Y, X) <t + 1.
Then, by (14),

IN(Y,X)+N(X,Y) = N(Y,X)+N(Y,X)+N(X,Y)
< (t+s—)+0t+)+(G+1)
= 2t+s+2,

14

so condition (5) cannot occur. O

Proof of the “if” part of Theorem 3.2: Assume that for every pair of distinct codewords
X,Y in C with N(X,Y) < N(Y,X) one of conditions (5) or (6) is satisfied. We have to
show that the code is t-ST (¢ + s)-SD according to Definition 3.2. Let Y be the transmitted
codeword and Z the received sequence, and assume that 0 < S(Y; Z) < t+s. We will attempt
to decode Y using Algorithm 2.1. Let r = r(Y; Z) be as defined by (1). If S(Y;Z) < t,
there is a subset A C {x, ¢, 2, (¢_1),..., 2,1} such that Z, — A =Y. Thus, the algorithm
will find Y when 2, arrives. On the other hand, if t < S(Y; Z) < t+s, Algorithm 2.1 cannot
produce Y as output. It remains to be proven that under conditions (5) and (6) no codeword
different from Y may result as output of the algorithm.

Assume first that there is an ¢ > 0 and a D such that D C {z, ; ¢, %, -1y, ., Tri-1}
and Z, ; — D € C, with Z, ; — D # Y. This means, a codeword Z, ; — D is produced
as output of the algorithm either when z, has arrived or before x, has arrived. Certainly
i <t+s;if not, Z,_; — D C Y contradicting conditions (5) and (6) (mainly, the code must
be unordered).

Let

Dy = Dn {mrfz'fta Tp—jtt1s--- amrftfsfl}
Dy = DNO{%pi—s, Tpopsy1s - Tpoiz1}

Therefore, Dy =0 or |Dy| <i—sif s <i, and |Dy| <t+s—1.
Notice that, since Y — (Z, ; — D) C DU {2, (1), Tr_(i-2),-- ., Tr}, then

N(Y.Z—D) < i+|Di+|Dyl
< i+ max{0,7 — s} + |Dy| (15)
and, since (Z,—; — D) =Y C{&_4—s, Trt—s41), - - -, Tr—i} — Dy, we have
N(Z,;—D,Y) < 1+4+t+s—i—|Dy. (16)
Now, let
t+s—i—|Ds] = 7. (17)

Notice that 7 > 0. We have two cases: 0 < j <t and j > t.
Assume first that 0 < j <t. Then, by (17), i — s + |Dy| > 0, and by (15) and (17), we have

N(Y,Z,_;— D) i+ max{0,i — s} + | Dy|
i+ (¢ — s+ |Dy|) + | D2

= 2(t—7)+s (18)
By (16), (17) and (18), we have N(Z, ;,— D,Y)<j+1land N(Y,Z, ;, — D) <2(t—j) +s,
where 0 < 7 < 't, contradicting (5) and (6) by Lemma 5.1.
Assume next that j > ¢. In particular, by (17), this implies that ¢ — s < 0 and, by (15)
and (17),

<
<

N(Y,Z_i—D) < i+|Dy|=s—(j—1). (19)

Now, by (16), (17) and (19), we have N(Z, ;,—D,Y) < j+land N(Y,Z, ;—D) <t+s—j,
where j > t, contradicting (5) and (6) by Lemma 5.2.

Finally, assume that the algorithm produces a codeword after Y has arrived. For this to
happen the skew must exceed ¢, i.e., t < S(Y; Z) < t+s. Otherwise, Algorithm 2.1 would
have produced Y, and, by the first part, would have not produced any other codeword. Thus,

there is an ¢ > 0 and a D such that D C {2, ¢, Zqi¢-1),- -, Trpi1} and Z,; — D € C,
with Z,.; — D # Y. Certainly ¢ < t; if not, Y C Z,,; — D contradicting conditions (5)
and (6).

Let D1 =DN{xpiit, Trsi_ts1,---, 2} In particular, |D;| < t—i+1. Since Y —(Z,,;,— D) C
D17 then

N(Y,Zi— D) < |Di| (20)

and, since

(Zryi = D) =Y C A{xp_s—ts Trsmigis - s Trgict—1) U ({Trqicts Trgicigrs - — D1) U
{[I;T—l-lv Tr42,. .- 7«777‘—}—2'}7

we have

N(Zpyi—D,Y) < (i+s)+(1+t—i—|Dy|)+i
= 2(t—=(|D1|=1)+s—(t—i+1—|Dy])
< 2(t—(|D1] = 1)+, (21)

the last inequality since t —i 4+ 1 — |Dy| > 0. Making j=|D;| — 1 (notice that 0 < j < t),
we have, by (20) and (21), N(Y. Z,4;, — D) <j+1land N(Z,., — D,Y) <2(t—j)+s. By
Lemma 5.1, this contradicts conditions (5) and (6), completing the proof. O

16

References

1]

2]

J. M. Berger, “A note on error detecting codes for asymmetric channels,” Information
and Control, Vol. 4, pp. 68-73, March 1961.

M. Blaum and J. Bruck, “Coding for Skew-Tolerant Parallel Asynchronous Communi-
cations,” IEEE Trans. on Information Theory, Vol. IT-39, No. 2, pp. 379-388, March
1993.

M. Blaum and J. Bruck, “Unordered error-correcting codes and their applications,”
Proceedings FTCS-22, Boston, pp. 486-493, July 1992.

M. Blaum and J. Bruck, “Delay-Insensitive Pipelined Communication on Parallel
Buses,” IEEE Trans. on Computers, Vol. C-44, No. 5, pp. 660-68, May 1995.

M. Blaum, J. Bruck and L. H. Khachatrian, “Construction of skew-tolerant and skew-
detecting codes,” IEEE Trans. on Information Theory, vol. IT-39, pp. 1751-1757, Sept.
1993.

T. Verhoeff, “Delay-insensitive codes - an overview,” Distributed Computing, 3:1-8,
1988.

17

