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Abstract— Consider a communication channel that con-
sists of several subchannels transmitting simultaneously and
asynchronously. As an example of this scheme, consider
a board with two chips (transmitter and receiver). The
subchannels represent wires connecting between the chips
where differences in the lengths of the wires might result in
asynchronous reception.

The contribution of this paper is a scheme which allows
pipelined asynchronous communication at very high rates
even when the amount of skew is arbitrarily large and un-
known apriori. Insensitivity to delay is accomplished by
encoding data in the frequency of the signal, as opposed to
amplitude. The theoretical questions that are answered are
what rates can be accomplished. In doing so we have ex-
tended the work of Capocelli and Spickerman on generalized
Fibonacci numbers. The second question that we answer is
how to encode data efficiently in the frequency of the signal.
For the purposes of encoding and decoding we use variable
length to variable length prefix-free codes. We have pro-
vided an algorithm based on integer linear programming for
constructing such codes. In essence, we have formulated a
scheme which is easy to implement and allows for asynchro-
nous data transfer at very high rates. Potential applications
are in on-chip, on-board and board to board communication,
enabling much higher bandwidths.

Keywords— Delay insensitive communication, parallel
asynchronous communication, skew, pipelined channel, fre-
quency modulation, Fibonacci Numbers, Generalized Fi-
bonacci Numbers, sum of Fibonacci Numbers, sum of Gen-
eralized Fibonacci Numbers, prefix-free codes, prefix codes,
variable length to variable length prefix-free codes, variable
length to variable length prefix codes.

I. INTRODUCTION
A. Motivation and Background

Consider a communication channel that consists of sev-
eral subchannels transmitting simultaneously. As an exam-
ple of this scheme consider a board with two chips (trans-
mitter and receiver), where the subchannels represent wires
connecting the chips. The transmitter would like to trans-
mit a binary vector using m-channels/wires. The propa-
gation delay varies from wire to wire and the problem is
to find an efficient communication scheme that will be de-
lay insensitive. Clearly, this problem is very common and
arises in every system that incorporates transmission of
information over parallel lines. Currently there are two
approaches for solving this problem in practice.
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A.1 Verhoeff’s Scheme for Asynchronous Data Transfer

The first solution was formulated by Verhoeff [29]. He de-
scribes the forgoing physical model as a scheme in which the
sender communicates with the receiver via parallel tracks
by rolling marbles in them. Presence of a marble indicates
a logical 1 and absence of a marble corresponds to a logical
0.

For expository purposes let us assume we have 6 tracks
and the sender would like to transmit two messages. These
messages are encoded using the following binary vectors
— 110010 and 010111. Let us say the transmitter sends
message one (110010) by rolling marbles simultaneously in
track 1,2 and 5. He then transmits message two (010111)
by rolling marbles simultaneously in track 2, 4, 5 and 6.
But the tracks are different lengths and this can cause the
following problem. The receiver will first receive a marble
in track 6 (the shortest track), followed by marbles in track
1,2 and 5 and then receive the remaining marbles in tracks
2, 4 and 5. And thus she would be unable to decipher the
received messages.

In order to circumvent the above described problem he
proposes the following solution. The sender will transmit
one message at a time. Once the receiver has received the
message, she will send an acknowledgment. The transmit-
ter can then send the next message. The relevant questions
are what are the necessary and sufficient conditions for the
receiver to be able to determine that she has received a
complete codeword and now must send an acknowledg-
ment? If we have n wires, at most how many different
codewords can there be? And is there an efficient encoding
and decoding algorithm?

He proves that the necessary and sufficient conditions are
that the codewords be unordered [29]. Sperner’s Lemma
tells us that the largest unordered set of codewords is the
set of codewords containing an equal number of ones and
zeros [29], [25]. And Knuth presents an efficient encoding
and decoding scheme [29], [18].

The problem with this scheme is that if we have n wires
at most O(n) bits can be transmitted between acknowl-
edgment signals. Specifically pipelined utilization of the
channels is not possible. As the need for bandwidth grows
it becomes critical that we come up with a scheme that can
do much better.

A2 Blaum-Bruck Scheme for Asynchronous Data Transfer

The need for a scheme which permits pipelined utiliza-
tion of the channels and thus data transfer at higher rates
was first identified and addressed by Blaum and Bruck [4],
[5], [6]. We will again use the same physical analogy to



describe their solution — namely a sender needs to trans-
mit messages to a receiver by rolling marbles down parallel
tracks.

As in the previous example, let us say that we have 6
tracks and the transmitter would like to transmit one of
two messages which are encoded using the following bi-
nary vectors — 110010 and 010111. If the transmitter sends
message one followed by message two, as was illustrated
previously, the receiver might not be able to decipher the
messages correctly since marbles might be received in a
different order.

Their solution is to define the concept of skew, which is
related to the number of marbles that can be received from
the second message before the first message has been com-
pletely received. Given a bound on the amount of skew,
they identify the sufficient and necessary conditions for
skew-tolerant and skew-detecting codes and provide con-
structions which are optimal in a certain sense.

The problem with this scheme is that in real systems,
rarely if ever, is the amount of skew known in advance. It
is a function of the differences in the lengths of the tracks,
i.e. the wires which will eventually be used to connect
the chips. The problem then is to design a communica-
tion scheme which provides higher bandwidth by allowing
pipelined utilization of the channels and which does not in
any way depend on the amount of skew.

B. The New Paradigm

Both the Verhoeff scheme [29] as well as the Blaum-
Bruck scheme [4], [5], [6] for asynchronous data transfer
encode data in the amplitude of the signal, as is done in
the case for synchronous data transfer. In both schemes,
presence of a marble (5V') encodes a logical 1 whereas its
absence (0V) encodes a logical 0. Consider the following
example — the transmitter would like to transmit data to a
receiver via three wires or subchannels. Initially the three
signals in the three subchannels are synchronized with re-
spect to one another. But since the lengths of the wires are
different, by the time they reach the receiver, they will be
skewed relative to one another, as is illustrated in Figure
1.1. The fact that the signals are skewed makes decoding
the transmitted messages, impossible. To deal with the
fact that the system is asynchronous Verhoeff has to in-
troduce acknowledgment [29], and Blaum-Bruck [4], [5], [6]
introduce skew-tolerant and skew-detecting codes.
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Fig. 1.1. Amplitude Modulation for Asynchronous Data Transfer

Our idea is that in the case of asynchronous data trans-
fer, data should be encoded in the frequency of the signal
as opposed to amplitude. The specific proposal is that each
signal will be a sequence of spikes. Adjacent spikes will be
separated by 1, 2, 3, ..., or K units of time. And informa-
tion will be encoded in the time interval between adjacent
spikes. Let us illustrate this with a specific example. As-
sume K = 2 and that a time interval of 1 unit between
adjacent spikes encodes a 0 and a time interval of 2 units
encodes a 1'. Figure 1.2 illustrates what happens when
a transmitter sends messages to a receiver via three asyn-
chronous subchannels. Notice that initially the signals are
synchronized relative to one another. But by the time they
propagate to the receiver, they are skewed relative to one
another since the wires are different lengths. Although the
signals are skewed relative to one another, the signals are
not distorted and the time interval between adjacent spikes
is preserved. The decoder can now decode the data simply
by measuring the time interval between adjacent spikes. If
the time interval between the first spike and the second
spike is 1 unit then the first bit must be a 0, else it must
have been a 1. If the time interval between the second and
third spike is a 1, the second bit must have been a 0, else
it must have been a 1, and so on and so forth.
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Fig. 1.2. Frequency Modulation for Asynchronous Data Transfer

As is apparent from the example above, differences in
the lengths of wires or skew does not really pose a prob-
lem. And in fact transmitting information across multiple
wires does not pose any additional problems than trans-
mitting information through a single wire using frequency
modulation. Hence in this paper, we will focus on this
simpler case. It must be noted that if we used the scheme
described above to transmit an n-bit binary vector consist-
ing of n 1s, it would require 2n time units to transmit.
All other n-bit binary vectors require less than 2n units of
time to transmit. Hence, in the worst case, this scheme ac-
complishes an expansion (E) of 2. Next we illustrate how
we use prefix-free codes to do much better. Again assume
K = 2. Now consider the following scheme — if the binary
vector to be transmitted starts with a 00, transmit 111, if
it starts with 01 transmit 12, if it starts with 10, transmit
a 21, if it starts with 110 transmit a 112 and if it starts
with a 111, transmit 22. An inverse of this mapping can

LA simple generalization for K = 3 would be a time interval of 1
unit encodes a 0, a time interval of 2 units encodes a 10 and a time
interval of 3 units encodes a 11.



be used for decoding?. The code is shown in Table 1.2 (D).

Ezample 1.1: The encoders and decoders based on the
variable length to variable length prefix-free code in Table
1.2 (D) have been implemented using prefix trees below

Encoder Decoder

112 22 00 110

Encoder and Decoder Implemented using Prefix Trees

Using the encoder and decoder above, we would like to
transmit 01110100011011101001011000111....

The encoder parses this binary sequence as

(01)(110)(10)(00)(110)(111)(01)(00)(10)(110)(00)(111)....

And encodes it as

(12)(112)(21)(111)(112)(22)(12)(111)(21)(112)(111)(22)....

The decoder interprets this as

(01)(110)(10)(00)(110)(111)(01)(00)(10)(110)(00)(111)....

In the code described above the source messages consists
of 2 or 3 source alphabets and the codewords consist of 2 or
3 code alphabets. Since neither do all the source messages
have the same number of source alphabets nor do all the
codewords have the same number of code alphabets, we will
refer to this as a variable length to variable length prefix-
free code. It must be noted that this scheme accomplishes
a worst case expansion of 1.5. Also the delay associated
with the encoder is 3 units since it has to examine atmost
3 bits before it can encode part of the binary vector — in
case the binary vector starts with 110 or 111. Similarly the
delay associated with the decoder is 4 units since it might
have to wait 4 units of time before it can decode part of the
transmitted message — in case it receives a 112 or 22. The
questions that need to be addressed are, given a value of K,
what is the minimum achievable expansion, E*? Given K,
the desired expansion E and the delays associated with the
encoder and decoder, how to design the smallest variable
length to variable length prefix-free code, or equivalently
the smallest encoder and decoder (in terms of number of
leafs)?

2In this paper we assume that the vector to be transmitted is infi-
nite. There is a minor problem if we need to transmit vectors of finite
length, e.g. 011011. 01 would be encoded as a 12, 10 would be en-
coded as a 21, leaving a 11 which cannot be encoded. This problem is
relatively easy to address. If the transmitter and receiver both know
in advance how many bits are to be transmitted, the transmitter can
simply insert a padding of Os. Thus it would pad the remaining 11
with a 0 and transmit 112 which is the code for 110. The decoder
gets a 12 which it interprets as a 01, then it receives a 21 which it
interprets as 10, followed by 112 which it interprets as 110. Since
both the receiver and transmitter agreed before hand that only 6 bits
were to be transferred and the receiver has received 0110110 which is
7 bits, it simply trashes the last bit (the padding).

C. Contribution and Organization

For the theoretical parts of the paper we will make
the arbitrary assumption that the coding alphabet is
{1,2,3,......K}. But our algorithm can be trivially ex-
tended to work for all coding alphabets. In Section II we
determine the minimum achievable expansion as a function
of K. In doing so we have extended the results of Spicker-
man and Joyner [26], [27] and Capocelli and Cull [7] who
derive expressions for the nth generalized Fibonacci num-
ber (order K) in terms of the golden mean (or its analog
for K > 3). We derive an expression for the sum of the
first n generalized Fibonacci numbers (order K) in terms
of the golden mean (or its analog for K > 3) and K. From
a pragmatic point of view, the result we establish is that
even for relatively small K, the minimum achievable expan-
sion is very close to 1. We have tabulated the minimum
achievable expansion for some small values of K in Table
1.1. We have already seen frequency modulation can be
used for pipelined asynchronous data transfer, but ampli-
tude modulation cannot. This means that the price we pay
for encoding the data in the frequency of the signal is neg-
ligible, provided we can encode the data in a near optimal
manner.

K 2 3 4 5 6 7
E* | 1440 1.137 1.056 1.025 1.012 1.005
TABLE 1.1

MINIMUM ACHIEVABLE EXPANSION FOR SMALL VALUES OF K

For the purposes of encoding and decoding, we use vari-
able length to variable length prefix-free codes. Block to
variable length prefix-free codes have been well studied in
literature [20]. Huffman [14] studied the problem of con-
structing an optimal block to variable length prefix-free
code when the probabilities of the source alphabets are
different and the transmission costs of the code alphabets
are the same. The objective function he minimized was ex-
pected transmission time. Varn [28], Perl et. al. [24], Cot
[8], Kapoor et. al. [15] and Golin et. al. [12] have studied
the problem of constructing an optimal block to variable
length prefix-free code when the probabilities of the source
alphabets are the same but the transmission costs of the
code alphabets are different. Again the objective function
they minimized was expected transmission time. Blachman
[3], Marcus [22], Karp [16], Krause [19], Cot [9], Mehlhorn
[23], Altenkamp et. al. [2], Gilbert [11] and Golin et. al.
[13] have studied the more complex case in which both the
source alphabet probabilities as well as the transmission
costs of the code alphabets are different. They also min-
imize expected transmission time. Qur problem is most
similar to the problem studied in [28], [24], [8], [15] and
[12] — since we assume that the probabilities of the source
alphabets are the same and the transmission cost of the
code alphabets are different.



A B C D

K=2 K=2 K=2 K=2
R=200| R=2.00 R =1.66 R=1.50
01 00 < 1111 | 000 < 11111 | 00 < 111
12 01— 112 | 001 <> 1112 | 01 « 12

10 -+ 121 | 010 « 1121 10 - 21
112 011 « 1211 110 « 112
100 < 2111 | 111 < 22
101 < 122
110 « 212
111 «+ 221
TABLE 1.2

SOME BLOCK TO VARIABLE LENGTH PREFIX-FREE CODES (A,B,C) AND
A VARIABLE LENGTH TO VARIABLE LENGTH PREFIX-FREE CODE (D)

The fundamental difference between our work and the
work described above is that we use variable length to
variable length prefix-free codes. Block to variable length
prefix-free codes are special cases of variable length to vari-
able length prefix-free codes. They have the added restric-
tion that all source messages are of equal length — this
assumption for our purposes is arbitrary, restrictive and
unnecessary. In Table 1.2 (A), Table 1.2 (B) and Table
1.2 (C) we present a block to variable length prefix-free
codes and in Table 1.2 (D) we present a variable length to
variable length prefix-free code. It must be noted that the
block to variable length prefix-free code in Table 1.2 (C)
has 8 rules and accomplishes an expansion of 1.66 whereas
the variable length to variable length prefix-free code in
Table 1.2 (D) has 5 rules and accomplishes an expansion of
1.5%. In fact, the smallest block to variable length prefix-
free code that accomplishes an expansion of 1.5 has a block
size of 12 bits or equivalently the code has 4096 rules! A
secondary difference is that we are not interested in min-
imizing the expected transmission time, but interested in
finding the smallest code that can achieve a given worst
case expansion.

The problem of encoding and decoding is also closely re-
lated to the problem of mapping arbitrary binary sequences
to binary sequences which satisfy a (d, k) run-length lim-
ited constraint. A binary sequence is said to satisfy a (d, k)
run-length limited constraint if and only if the number of
consecutive zeros between two ones is between d and k. The
problem of mapping binary sequences to binary sequences
which satisfy the (d, k) run-length limited constraint arises
in the context of magnetic data storage and has been stud-
ied extensively in literature. Adler, et. all [1] applied tech-
niques from Symbolic Dynamics [21] to produce finite state
encoders which could be used for coding and decoding. Al-
ternative techniques were introduced in [17] and [10].

We will present our algorithm for constructing optimal
variable length to variable length prefix-free codes in Sec-

31t is easy to prove that we cannot accomplish an expansion better

than 1.66 using a block (block size 3) to variable length prefix-free
code.

tion ITI. From a pragmatic point of view,the result we es-
tablish is that relatively small variable length to variable
length prefix-free codes or equivalently relatively small en-
coders and decoders, even for small K, can achieve very
low expansions. In Table 1.3 we have tabulated the per-
formance of some encoders and decoders all of which have
less than a 100 leafs as a function of K. A more detailed
description of these results can be found in Section IV.

K 2 3 4 5 6 7
E | 1.500 1l.167 1.125 1.111 1.100 1.090
TABLE 1.3

EXPANSION THAT CAN BE ACHIEVED USING ENCODERS AND DECODERS
HAVING LESS THAN A 100 LEAFS FOR SMALL VALUES OF K

The big picture is that we have formulated an efficient,
high bandwidth scheme which can be used to transfer large
amounts of data in a pipelined manner even if the differ-
ences in the lengths of the wires or skew is arbitrarily large
and unknown a priori.

II. RATE ANALYSIS FOR FREQUENCY MODULATION

Notice that a signal can be represented by a sequence
of positive integers, t1,t2,ts, t4, ....... , where t; is the time
interval between the ith and (i 4+ 1)th spike. Thus for all
i, t; belongs to {1,2,3,....., K — 1,K}. The question we
seek to answer is, given K, in T units of time, how many
bits can be transmitted. We will refer to this quantity
as M(T). We define the minimum achievable expansion
E* = limr_oT/M(T). The plan is to first determine
the number of sequences of length 7" whose elements are
in {1,2,3,..., K — 1, K}. We will refer to this as Ng (T).
After that we will determine the number of sequences (ex-
cluding the null sequence) whose length is less than or equal
to T and whose elements are in {1,2,3,..., K — 1, K}. We
will refer to this as Nx (T'). This will enable us to compute
the number of bits, M(T), that can be represented using
sequences of length less than or equal to 7. This will en-
able us to compute the minimum achievable expansion, E*.
But first, we will define the generalized Fibonacci numbers
(order K) and their sum.

Definition 2.1: We define Fg (n) to be the nth Fibonacci
number (order K). And we define F (n) to be the sum of
the first n Fibonacci numbers (order K).

K
> Fg(n—1) n>K
=1
Fr(n) = on—2 2<n<K-1
1 n=1
0 n=20
— n . n 0
FK(’I’L)Z FK(’L)ZZFK(Z)
=1 1=0



Next we will present a recursive formula for computing
Nk (T) and show that it is related to the generalized Fi-
bonacci numbers (order K). Then we will present a known
closed form formula for computing the nth generalized Fi-
bonacci number (order K).

Theorem 2.1: Nk (T) =< ;

1

K

Ng (T —1) T>K
=1

2T-1 1<T<K

Proof: When T < K, each element in the sequence
will automatically be less than K. Hence, Nk (T) is just
the number of compositions of T', which is 27~1.

Assume T' > K. The number of sequences of length T
in which the last element is a 1, is Nx (T' — 1), the number
of sequences of length 7" in which the last element is a 2,
is Ng (T'—2), and so on and so forth. Hence the total

number of sequences of length T' is Ng (T — 1) + ....... +
Ng (T - K). m

Corollary 2.1.1: Nx(T) = Fx(T +1)

Proof: It is a consequence of the Definition 2.1 and
Theorem 2.1. It can be proven formally by induction. MW

K—1
Theorem 2.2: Let p(A) = A% — S X¢
i=0

Let ¢£-K)be the distinct roots of p(A) = 0. (Furthermore,
we will assume that ¢>§K)is the unique positive real root of
p(A) = 0). Define agK) as follows

) —1
o' (K +1) 6 — 2K]

() _

Then?

Fie(n) = 3= o o] = (o [o]")
i=1

Proof: This was proven by Capocelli and Cull [7]. H

Next we will show that Ng (T) is related to the cumu-
lative sum of generalized Fibonacci numbers (order K).
Having done so, we will present a recursive as well as a
closed form formula in terms of the golden mean and K,
for computing the sum of the first n generalized Fibonacci
numbers (order K).

Theorem 2.3: Nk (T) =

(2

Nk(i)=Fg (T+1)-1

T
=1

Proof: It follows trivially from Corollary 2.1.1 and
Definition 2.1. |

Theorem 2.4: Fx (n) can be computed recursively as fol-
lows,

4Throughout this paper, the notation (x) will refer to 2 rounded to
the nearest integer.

K _
14+ > Fp(n—1) n>K
n — =1
Fic (n) = g1 1<n<K-1
0 n=0

Proof: The proof is by induction. First we prove the
base cases. Proof for n = 0 is obvious.

Casel: 1<n<K-1
Fr(n) =Y Fk (i) = Fx (0) + Fx (1) + 3 Fx (3)
=0 =2
=0—i—1—|—22"_2=1—}—2n_1—1=2"_1
=2
Case 2: n=K
_ K
Fr(K—-1)+ > Fx (K —1)
=1

_ K-1 _
Fr(K—1)+ Y Fg(i)=2Fg (K —1)=2K"1
i=0
K K—1 _
1+ B (K—d) =14 Y Fj (i) =142K 11 =2K1
=1 i=0
Case3:n>K+1
_ K _
Assume: Fx (n) =1+ > F(n—1)
B B =1
FK(n+1)=FK(n)+FK(n+1)
_ K _ K

i=1 i=1

_ K _

Fx(n+1) =1+ > Fr(n+1—1) ]
i=1

Before we derive the closed form formula for F}, we need
to prove several lemmas which will simplify the proof of the
theorem. The first lemma involves a new idea and hence is
presented here. The other lemmas are tedious and hence
have been delegated to the appendix.

(K)

-1
i m=[ff—11

K
Lemma 2.5.1: Y «
i=1

Proof: First let us define a new function G as follows

K
> Gk (n—1i) n>K
i=1
—1) - <
1 n=1
1 n=>0

Next we will prove

K n
Greln) = &1 6]

. —1
where 'yEK) =(K - l)agK) (ngK) — 1)

Since, G is a Fibonacci type recurrence having the same
characteristic polynomial, it can be written as

Gr(n) = é A [4] "



The only issue that needs to be addressed is the exact
value of 'y( ).

Case 1: K =2 From Capocelli and Cull [7],

R, = (1,6 — 1] and I = [G2(1), G2(0)] = [1,1]

@ _ Rl (“SEK) _ 1)
Yi

(6] [+ 19 — 2]
w_ 8] -]
T o 2]

But since p(¢{>) = 0 and K = 2,

6] 6] =12 6] -
1 = (K —1) (6 (K +1) ¢ —2K]) -
o = (1~ ol (67 1)

Case 2: K > 3 From Capocelli and Cull [7],

R =1, {¢§K> T ¢§K)}K_l ..... ¢§K)} 1]
I=[Cx(K =1), o, Gr (1), G (0)]

wo_ R0
N T e k]

90 —1)

> (6] Gt -

—[%Kﬂ GKmy+§?[&Kﬂﬂde—u)—GKuo
g [¢<K)} Gr(K —u) = ug [¢<K)} Cr(K—u—1)
> GrlK =)= 3 Grelu) = Gue(K)

;Tﬂlostituting,

w5 = [6]" Gx(0)
+’§ (6091 1Gx(K — w) — 26K (K —u—1)

KO — MK)] (0) i [ (K)}
+ [65) Gx(2) -

+ ng [¢>§K’} “1GR(K =) — 2K (K —u—1)]

T er() -
2Gx(1)]

2Gk(0)]

When K—3>u > 1, [Gk(K —u) — 2Gk(K —u—1)] =
—1 (by definition). It is easy to show that when u = 0,
[Gk(K —u) —2Gg(K —u—1)] = —1. This is only true
for K > 3. (that’s why we addressed K = 2 separately)

K

0 - o]

u=0

(6] 4 (-1 []

But since p(q&z@)) =0,
[6] =5 (6] =0

u=0
Hence,
K2
w0 = (K - 1) o]

V) Z (K~ 1) ([¢§K)} [(K—i— 1) o) — 2Kb—1
(K) — (K - )aEK) (¢§K) _ 1)—1

Now note that,

Gkg(0)=1
Also,
K K 1
_ (K) _ (3 _ (K)
Gk (0) —;% = (K 1);% S0 1
Hence,
K 1
(K) -1
Q; =|K-1 |
i; ¢ ¢§K) -1 | ]
K—1
Theorem 2.5: Let p(A) = A" — > A
i=0

Let ¢£K)be the distinct roots of p(A\) = 0. (Furthermore,
we will assume that g{)( )is the unique positive real root of

p(A) = 0). Define ,Bi as follows
IB(K) (K)¢(K) _ 1
o) 1 (K+1)¢) —2K
Then

Fie (m) = (89 [{]" -

Proof: Fy (n) = zn: Fy (i) = f: al(K) i [d)z('k')}j
i=0 =1 =0

K-17")

r n+1
Fie(m) = 3 o o
n)= az = >
K i=1 ¢§K) -1
()™
_ K ¢i K 1
(K) J (K)
Frx(n) = «a — \
) =2 o o 1 5% 5w

’ n+1
K (n) = i oF) [¢§K)} K —1]"
= " ¢>§K) 1
Substituting,
_ K n
Fic(m) = 3 0[] ~ K — 1!

Let,
drc(n) = ZﬂKﬁ<m}



Bxpansion  vs. K the binary vectors that we would like to encode can be

15 very large. And in fact, the entire vector might not be
available at the time transmission is to commence. So we
14 will focus in on online encoding and decoding. Specifically,
we will use variable length to variable length prefix-free
513 codes. Before we define the problem formally and present
@ our algorithm we will present some notation.
@
o
H12 Notation 8.1: N is the set of Natural Numbers
A is the alphabet set and we will assume A C N
1.1 EX is the set of non-null strings over A
For all x € X7, |z| is the number of alphabets in x
For all z € X7, ||z is the sum of the alphabets in z

4 6 8 10 12 14 W= {z]z € X} and |z|| =}
K %= {z|z € ¥} and |z| =1}
+ > —
Fig. 2.1. Minimum Achievable Expansion E* as a Function of K _{_Assume 8 € EA and l. - ||S|| We define P (s’ l) {CE|CE €
¥ and ||z|| =! and s is a prefix of z}
Assume s € X and [ > |s|. We define Qa(s,1) = {z|r €

Hence, ¥} and |z| =1 and s is a prefix of z}

a () [ 51" -1
Fg(n) = +dg(n) —[K —1
reln) = B[]+ dic(m) — 1K -1 Ezample 8.1: Let A = {1,2,3}. Let = = 123221. |z = 6
By Lemma 2.5.2, 2.5.3 and 2.5.4 (see appendix), and ||z|| =1+2+3+2+2+1=11. I3 = {111,12,21}
Fre (n) = <g§K>[ gK)} _ [K_l]—1> gnd Y2 = {11,12,13,21,22,23,31,32,33}. Pa(12,5) =
{1211,122} and Q4(12,3) = {121,122, 123}.

Corollary 2.5.1: The closed form formula for Ny (T) is,
the code alphabet. Let Mg C ng such that Mg is a full

. i) [ ()] T+ -
Ne(r) = (80 [o°) "~ K[k -1
prefix-free set and Mg C Eg such that M is a prefix-free
Proof:  Follows trivially from Theorem 2.3 and Theoset (it need not be full). A one to one mapping from Mg to
rem 2.5. B\/ is a variable length to variable length prefix-free code.

. This mapping will referred to as the encoding function, &,
Now that we have a closed form expression for the numy, j itg inverse, £ !, is the corresponding decoding func-

ber of sequences whose length is less than or equal to Ty (Note that Mg must be a full prefix-free set in order

we are ready to establish a tight bound on the minimum g onsure every source message can be encoded).
achievable rate, E*. This is done so in the theorem below.

) ()| . Emample 3.2: Let § = {0,1}* and C = {1,2,3}.

Theorem 2.6: M (T') ~ [10g2 B+ (T +1)log, ¢y J And Ms = {0,100,101,110,1110,1111} and Mg =

E*= lim T/M(T) =1/log, ¢gK) {1,211,22,31,212,23}. We define £ : Mg — Mg such

T—o0 that £(0) = 1, £(100) = 211, £(101) = 22, £(110) = 31,

K (1110) = 212 and £(1111) = 23. Note that £ is a variable

length to variable length prefix-free code. In the diagram

below we have shown the encoding and decoding function,

%

We have plotted the minimum achievable expansion F —1 .
versus K in Figure 2.1. It is evident, that as K is in—g and &, implemented as prefix trees.
creased E* falls exponentially to 1. From a pragmatic point
of view, this establishes that even for relatively small K
(K = 6), the minimum achievable expansion is very close
to 1 (1.012). We have already seen that frequency mod-
ulation permits pipelined utilization of the channel, but
amplitude modulation doesn’t. This establishes that the
price we pay for this advantage can be negligible (provided
we can encode and decode data in a near optimal manner).

Definition 3.1: Let S be the source alphabet and C be

Proof: Follows trivially from Corollary 2.5.1.

Encoder

Encoder and Decoder Implemented using Prefix Trees

ITII. ENCODING AND DECODING USING VARIABLE

LENGTH TO VARIABLE LENGTH PREFIX-FREE
CODES

It must be noted that the decoder is not a complete tree
since no symbols is attached to 32. But this is not a prob-
lem since 32 is not a symbol in the encoder and hence will

Now that we have established what rates can be accom-
plished using frequency modulation, we need to design en-
coding and decoding algorithms. In practice, the size of

5In this paper we are assuming that the vector to be transmitted is
in base 2. The algorithms presented in this paper can be generalized
trivially to deal with higher bases.



never be transmitted. In the worst case this variable length
to variable length prefix-free code accomplishes an expan-
sion, F, of 1.33. Also the encoder has to examine at most
4 bits (in case the binary vector starts with a 1110 or 1111)
before it can encode part of the vector to be transmitted.
Hence, the delay associated with the encoder, Tg is 4 time
units. Similarly the decoder might have to wait upto 5
time units (in case it receives a 212, 23 or 32) before it
can decode part of the received message. Hence, the delay
associated with the decoder, Tp is 5 time units.

Problem 3.1: We are given K, the desired expansion F,
and the maximum permissible delays associated with the
encoder, Tg and the maximum permissible delay associated
with the decoder Tp. The problem is to design the smallest
variable length to variable length prefix-free code which
achieves the desired expansion (or better) and has the given
delays (or better). That is we need to find Mg C X such
that Mg is a full prefix-free set and Mg C ZJCC such that
M¢ is a prefix-free set (it need not be full). And a one
to one mapping from Mg to Mc which we will refer to as
the encoding function £. The criteria we are minimizing is
|Ms| = [Mc|.

Let I € {1,2,...,Tp} and d € {1,2,...,Tr}. Let 2} be
the number of leafs (non negative integer) in the encoder
at depth d which have a symbol of length . Formally,

24y = |{z]x € Ms and |z| = d and ||£(z)| = 1}
For all [ and d, 2, > 0

Also, we define z! to be the number of symbols of length
[ and we define x4 to be the number of leafs in the encoder
at depth d. Formally,

2! = |{z|r € Mc and ||z| = 1}|
ZTq= |{m|m € Mg and |m| = d}|

rl = Zx and zq = sz
i=1
The problem is to design the smallest encoder decoder
pair. So we would like to,
Tp Tg

min Y Z.’L‘

i=1j=

Of course the values taken on by 1‘; cannot be arbitrary.
We know that the encoder must form a full prefix tree and
the decoder must form a prefix tree. Furthermore £ must
accomplish an expansion of E. These conditions impose
certain constraints on the values that can be taken on by

Theorem 8.1: We are given Mg which is a full prefix-free

set. x1,...., x7, must satisfy the following constraint

TE .
S 2Tt g, = 2Ts
i=1

Proof: ~ We know that (J,cps, @s(s,TE) C »re.

Also £F* C U,e s @s(8,Tg).  Assume this were not

the case. Hence, there exists an z € E?E such that
T ¢ Usems @s(s,Tr). Hence there does not exist an
s € Mg such that s is a prefix of . Hence Mg is not full.
This is a contradiction. Hence, | J, ¢y, @s(s,Tr) = EgE.

Hence,}UseMs Qs(S,TE)| = ‘E?

Assume sq, so € Eg and |s1| < L and s3] < L. We
know that if s; is not a prefix of sy and ss is not a prefix of
s1 then Qs(s1,L) N Qs(s2,L) = ¢. Hence for all s1, 53 €
Mg, Qs(s1,Tr) N Qs(s2,Tr) = ¢. Also assume s € Xf
and |s| < L. |Qs(s,L)| = 2F15I. Hence for all s € Ms,
Qs(s, T)| = 2T=~ I,

sers @s(8,TE)| = X e nss Qs (s, Tr)|

T,
= Toenr, 2771 = 3 200z,
=1

Hence,

TE i
=275, Hence, Y, 2(Ts- g, = 275, |

Also ‘Z?E
i=1

Theorem 8.2: We are given M¢ which is a prefix-free set.
Ty e ,zTP, must satisfy the following constraints

L
Forall 1 <L <Tp, > Fx(L—1+1)z! < Fg(L+1)
=1

Progf: We are given L, such that 1 < L < Tp.
Define Mc(L) = {z|z € M¢ and ||z|| < L}. We know that

UseMc(L) Pc(s, L) C TG
Hence,|U, 1, ) Po(s, L)| < 11|

Since Mg is a prefix-free set and M¢(L) C Mc, Mc(L)
is prefix-free set. Assume s1, s3 € X and ||s1]| < L and
Is2|| < L. We know that if s; is not a prefix of sg and s5 is
not a prefix of s1 then Po(s1,L) N Po(s2, L) = ¢. Hence,
for all s1, so € Mc(L), Po(s1,L) N Po(se, L) = ¢. Also
assume s € X and ||s|| < L. If ||s| < L, |Pc(s,L)| =
Ng(L—|sl)) = Fx(L = ||s|| +1). If [|s]| = L, |Pc(s, L)| =
1= Fk(1) = Fx(L—||s|+1). Hence |Pc(s,L)| = Fx(L—
[[sll + 1).

Hence, |U,e o (z) Po(s: )| = Lse oz 1Po(s L))

L
= Dsettor) Fx (L= sl +1) = 121 Fr(L—1+1)a!

L
Hence, ‘UseMc(L) Po(s, L)( = S Fr(L—1+1)a!
=1
Also |ITE| = Fr(L+1)
Hence, Z Fr(L—1+1)at < Fg(L+1) [
=1

Theorem 3.3: Since £ accomplishes an expansion of E,
x% must satisfy the following constraint

J
i/j>E=1zi=0

Proof:  Assume there exists ¢ and j such that ¢ /i >E

and % # 0. Hence there exists s € Mg such that [s| = j



and ||£(s)|| = i. Hence ||€(s)|| /|s| =i/j > E. Hence & does
not accomplish an expansion of E. This is a contradiction.
|

It must be noted that the objective function to be mini-
mized as well as the constraints listed are all linear. We use
standard integer linear programming techniques to com-
pute the values of x; that minimize the given objective
function. We still need to establish that given the values
of w§, we can construct a variable length to variable length
prefix-free code. This involves constructing Mg, M¢c and

£.

Theorem 8.4: Given 1, ....,zr, that satisfy the follow-
ing constraint

T

S 2Te—i)g, = 9Tk

i=1

We can construct Mg such that Mg is a full prefix-free
set and for 1 <i < Tg, |{s|s € Mg and |s| =i}| = z;.

Proof: The proof is by induction.

Base Case: Number of variables is 1. Hence Ty = 1.
Since, 2;72512@5_’)3:1' =2T5 3y =2. Let Mg = {0,1}.

Inductive Hypothesis: Number of variables is Tr. We
are given 1, ...., 1, such that 2212(%_"):131' =9TE. We
can construct Mg such that Mg is a full prefix-free set and
for 1 <i <Tg, |{s|s € Mg and |s| =i}| = z;.

Now consider the case when the number of variables
is Tg + 1. We know that X[=12(Te+1-dy, — 2T+l
Since 27+ is even, LI1Et'2(Te+1-0z, must be even.
ylerloTeti=dy, = gp 1 + 2878 2Te=0g,  Also
2%7= 2(Te =i, is even, hence 1, 1must be even. For i €
{1, 2,..... , T — 1} define Z; = z; and Ty =TTy +$TE+1/2.
Now,

T . Tg—1 .
S 2Tz, = gp, + > 2Tz,
=1 i=1

Tp—1 ,
B CL‘TE+1/2+JITE + Z 2(TE_1){L‘7;
i=1
= 3 20 e = (3 200y 2 = o
1= 1=

By the inductive hypothesis we can construct Mg such
that Mg is a full prefix-free set and for 1 < i <
Tg, |{s|s€ Mg and |s| =i}| = Z;. Or equivalently, for
1 <i<Tg—1, [{s|s€Mgand |[s|=i}| = z; and
|{s|s € Mg and |s| =Tg}| = zr, + @ry4+1/2. Define
U C Mg such that |U| = zry41/2 and for all u € U,
lu| = Tg. Let V = {u0,ullu € U}. Now let Mg =
(Mg —U)UV. It is easy to show that for 1 <i < Tg + 1,
[{s|s € Mg and |s| =14}| = x; and Mg is a full prefix-free
set. |

Theorem 3.5: We are given z',....., 2P
ables satisfy the following constraint

L
Forall 1< L<Tp, > Fx(L—1+1)z! < Fx(L+1)
=1

, and these vari-

We can construct Mg such that M¢ is preﬁx'—free set and
for 1 <i<Tp, |{s|s € Mc and ||s| =i}| =z".

Proof: The proof is by induction.

Base Case: Number of variables is 1. Hence Tp = 1.
Hence Fix(1)z! < Fg(2). Hence 2! < 1. If 2! = 0, let
MC = {} If .’El = ]., let MC = {1}

Inductive Hypothesis: Number of variables is Tp. We
are given z!,.....,27P such that for all 1 < L < Tp,
SEFr(L — 1+ 1)at < Fr(L +1). We will assume we
can construct M¢ such that Mg is prefix-free set and for
1<i<Tp, |{s|s € M¢ and |s| =i}| = =*.

Now consider the case when the number of variables
is Tp + 1. For i € {1,2,....,Tp} define z° = 2'. For
all 1 < L < Tp, XL Fx(L -1+ 1)7" < Fx(L +1).
Hence, by the inductive hypothesis we can construct Mg
such that M¢ is prefix-free set and for 1 < i < Tp,
|{s|s € Mc and ||s| = i}| = z* = 2. We know that,

Tp+1
Y Fx(Tp+2—1)a' < Fg(Tp +2)
=1
Or equivalently,
Tp
Fx(1)z™*! < Fre(Tp 4+ 2) = Y- Fx(Tp +2 — )
=1
Tp
Hence, TP+ < Fp(Tp +2) — 5. Fr(Tp +2 — 1)t
=1
Now let U =TI — U, ez, Po(s,Tp +1)
Note that Po(s,Tp +1) C IIgP T
Hence, |U| = )Hgm—l‘ _ ’UseMc Po(s,Tp + 1)

Assume s1, s3 € 5 and ||s1]] < Tp+1 and ||s2|| < Tp+
1. We know that if s is not a prefix of s5 and ss is not a
prefix of s1 then Po(s1,Tp+1)NPo(se, Tp+1) = ¢. Hence
for all S1, S2 € Mc, PC(Sl,TD + 1) n Pc(82,TD + 1) = ¢.
Also assume s € f and ||s|| < Tp + 1. |Po(s,Tp +1)| =
Nie(To +1— sl) = Fxe(Tp +2— |s]).

Hence,}UseMc Pc(S,TD + ].)| = ZSGMC |Pc(S,TD + 1)|

I
=Y sente Fx(Tp +2 = s) = X Fx(Tp +2— 12!
=1
L
Hence, ’UseMc Po(s,Tp + 1)‘ =3 Fx(Tp +2— 1)z
=
Also ‘HED_H‘ =Fx(Tp+2)
I
Hence, |U| = Fx(Tp+2) — > Fx(Tp +2 — 1)a!
=1

Hence, z7>+! < |U|. It suffices to pick "1 elements
from U and add them to M¢ to generate M. [ |

Theorem 8.6: Given Mg and Mg, we can construct
£ : Mg — Mg, such that £ is one to one function and



Proof: 'We will construct a one to one function & by
assigning z’; elements of size j from Mg to z} elements of
size ¢ from Mg. It is easy to show that this can be done

and & will achieve an expansion of E (or better). |

Next we will illustrate how the techniques described
above can be used to construct optimal encoders and de-
coders.

Ezxample 3.3: We are given K = 3, Tg = 5, Tp = 6
and F = 1.25. We need to design the smallest encoder
decoder pair which will satisfy the above constraints. Let
l € {1,2,..,Tp} and d € {1,2,..,Tg}. Let zl be the
number of leafs in the encoder at depth d which have a
symbol of length [. For all [ and d, xfi > 0. Without loss
of generality we can assume that the non-zero variables are
zi, 22, 23, 5 and 8. (Assume 23 = 1. That is we assigned
a label of length 2 at depth 3. Assume the label is 11. Since
M is prefix-free, 111, does not belong to M. Hence we
could replace 11 by 111. This would set 2 = 0 and increase
z3 by 1. The size of the code would be unaltered and it
would still accomplish an expansion of E or better).

The problem now is to
min z] + 22 + 23 + x5 + 28

subject to

16z} + 872 + 423 + 225 + zf = 32
r1 <1

ri+23<2

2z1 + a3+ 23 < 4

Tzl + 423 + 223 + 25 < 13

13z} + 722 + 423 + 2§ + 2§ <24

The solution to this integer program is

{.’L’% :1,1'%:0,%'%:0,33‘51:6,11'2:4}

We are given 21 = 1,22 = 0,23 = 0,24 = 6 and z5 = 4.
We will first construct Mg such that Mg is a full prefix-free
set and for 1 < ¢ < Tg, |{s|s € Mg and |s| = i}| = z;. The
proof of Theorem 3.4 suggests a recursive procedure. We
first need to construct a set in which 1 = 1,29 = 0,23 =
0,724 = 8. In order to this we need to construct a set in
which z;1 = 1,29 = 0,23 = 4. In order to this we must
construct a set in which z; = 1,2z, = 2. And finally to do
this we need to construct a set in which z; = 2. This is
easy

.’E1=2
Mg = {Oal}

In order to generate a full prefix-free set in which 1 =
1,29 = 2, we will select 22/2 = 2/2 = 1 element of size
from {0,1} and use it to generate 2 elements of size 2. We
apply this technique repeatedly, till we have the desired
solution.

I 21,1‘2:2
Mg = {0,10,11}
It =1,272=0,£l?3=4
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Mg = {0,100,101,110,111}

I = 1,.’E2 =0,£L‘3 =0,1,'4 =8

Mg = {0, 1000, 1001, 1010, 1011,1100, 1101,1110,1111}

Tr1 = 1,.’1,‘2 =0,.Z‘3 =0,.’L‘4 = 6,.’L‘5 =4

Mg = {0,1000, 1001, 1010, 1011, 1100, 1101,
11100,11101,11110,11111}

We are given 2! = 1,22 = 0,23 = 0,2* = 0,2° = 6 and
28 = 4. Now we construct M such that Mc is prefix-free
set and for 1 < i < Tp, |{s|s € Mc and ||s|| =i} = ="
The proof of Theorem 3.5 suggests the following procedure.
First construct a prefix-free set M¢ such that ' = 1. Next
modify this set to construct a new set such that z! = 1 and
2% = 6. Next modify this set to construct a new set such
that 2% = 4.

=1
Mo = {1}

To generate a prefix-free set in which z! = 1 and 2° = 6,
we need to add 6 elements to M¢ from I3, — Po(1,5) =
{2111, 212,221, 23,311,32}. A similar procedure is used
to generate a prefix-free set in which ! = 1,25 = 6 and
28 = 4. The steps are shown below.

z!=1and2°=6

Mg = {1,2111,212, 221,23, 311, 32}

z' =1,2° =6 and 2% =4

Mg = {1,2111,212, 221,23, 311, 32, 2112, 213, 222, 312}

We have constructed Mg and M. In order to generate
¢ we need to assign 1 = 1 element of size 1 from Mg to 1
element of size 1 in M¢c. We map 0 < 1. We need to assign
x5 = 6 elements of size 4 from Mg to 6 elements of size 5
in Mc. We map 1000 < 2111,1001 < 212,1010 < 221
and so on and so forth. The full code is shown in the table
below

0—1 1011 < 23 11101 < 213
1000 < 2111 1100 « 311 11110 < 222
1001 < 212 1101 « 32 11111 «+ 312
1010 <~ 221 11100 «< 2112

Ezxample 3.4: We are given K = 3, Tg =9, Tp = 10 and
E = 8/7 = 1.14. We need to design the smallest encoder
decoder pair which will satisfy the above constraints. Let
l € {1,2,..,Tp} and d € {1,2,..,Tg}. Let z} be the
number of leafs in the encoder at depth d which have a
symbol of length [. For all [ and d, :Ufi > 0. Without loss
of generality we can assume that the non-zero variables are
xi, 23, 23, x5, 23, 28, 28, 2 and xi°.

The problem now is to

min z1 + 23 + 23 + z3 + 23 +28 + 28 + 2 + z1°

subject to

2561 + 12822 + 6423 + ..... + 428 + 223 + 20 = 512
i <1

zi + 23 <2

2z] + 23 + 23 <4



4ol + 223 + 23 + 25 <7

Txi +4zd + 223 + xf + 23 <13

13z + 723 + 423 + 224 + 28 + 2§ < 24

44xt + 2422 + 1323 + Txd + 42 + 228 + 28 < 81

81z} + 44x3 + 2423 + 13x% + 728 + 4z + 28 + 2§ < 149

149x1 +81x3 + 4423 + 2453 + 1322 + 728+ 228 + 23+ 230 <
274

This integer program has no solution. Hence, there does
not exist a variable length to variable length prefix-free
code which has the given delays and accomplishes the given
expansion. It must be noted that the desired expansion
of 1.14 is above the theoretically achievable expansion of
1.137.

IV. RESuLTS

In Table 4.1 and Table 4.2 we present some interesting
encoders and decoders designed using the techniques out-
lined in the previous section. In Table 4.3 we summarize
the dependence of the size of the encoder and decoder mea-
sured in the number of leafs versus K and the expansion
achieved. The table is not exhaustive. Its purpose is to
illustrate that using relatively small values of K and rel-
atively small encoder decoders, one can accomplish very
low expansions. Furthermore, it illustrates that if we fix
K, we can improve the bandwidth by increasing the size
of the encoder and decoder. Alternately, if we fix the de-
sired expansion, we can decrease the size of the encoder
and decoder simply by increasing K.

V. CONCLUSIONS

We have designed a pragmatic scheme for high band-
width, pipelined asynchronous data transfer which can be
used even when the amount of skew is unknown a priori.
The novel idea here is to encode data in the frequency of
the signal as opposed to amplitude.

We have established that even for relatively small values
of K, this scheme is very efficient in terms of rate. In doing
so we have extended the work of Capocelli et. al. [7] and
Spickerman et. al. [26], [27]. We have derived a formula
for the sum of the first n generalized Fibonacci numbers in
terms of the golden mean (or its analog when K > 3) and
K itself.

For the purposes of encoding and decoding, we first in-
troduced the concept of a variable length to variable length
prefix-free code. Given the delays associated with the en-
coder and decoder and the desired rate, we presented an al-
gorithm which can construct the smallest variable length to
variable length prefix-free code or equivalently the smallest
encoder and decoder. Using the above outlined techniques,
we have shown that even small encoders and decoders can
be used to encode and decode the data efficiently.
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K=2 K=3 K=3 K=4
E=15 E =133 E=125 E=1.20
Tg =3 T =4 T =5 T =6
Tp =4 Tp =5 Tp =6 Tp =17
00111 (0«1 01 01
01 & 12 100 < 211 1000 < 2111 10 -2
10 < 21 101 < 22 1001 < 212 1100 « 31
110 < 112 | 110 < 31 1010 « 221 11010 «+ 321
111 & 22 | 1110 < 212 | 1011 <~ 23 11011 « 33
1111 <~ 23 | 1100 < 311 11100 «+ 411
1101 « 32 11101 < 42
11100 < 2112 | 111100 < 322
11101 «+ 213 | 111101 < 34
11110 < 222 | 111110 « 412
11111 < 312 | 111111 « 43
TABLE 4.1

SOME VARIABLE LENGTH TO VARIABLE LENGTH PREFIX-FREE CODES

K=4 K=5 K=5
E=1.16 E=1.16 E=114
Te =9 T =9 Tg =10
Tp =10 Tp =10 Tp =11
01 01 01
10 - 2 10 -2 10— 2
1100 < 31 110 « 3 110 < 3
110100 « 3211 11100 < 41 11100 «+ 41
110101 « 322 111010 « 421 1110100 « 4211
110110 + 331 111011 « 43 1110101 < 422
110111 « 34 111100 « 511 1110110 «< 431
111000 < 4111 111101 < 52 1110111 < 44

111001 « 412
111010 < 421
111011 « 43
1111000 «< 3212
1111001 «< 323
1111010 « 332
1111011 « 4112
1111100 « 413
1111101 < 422
1111110 < 44

11111110 « 3213

11111111 « 324

1111100 « 422
1111101 « 44
1111110 < 512
1111111 < 53

1111000 « 5111
1111001 « 512
1111010 « 521
1111011 < 33
11111000 « 4212
11111001 < 423
11111010 « 432
11111011 « 45
11111100 « 5112
11111101 « 513
11111110 « 522
11111111 < 54

TABLE 4.2

MORE VARIABLE LENGTH TO VARIABLE LENGTH PREFIX-FREE CODES



E/JK[2 3 4 5 6 7 8

1.50 | 5

1.33 6

1.25 1 7

1.20 23 11 8

1.16 74 20 12 9

1.14 40 20 13 10

1.13 81 37 21 14 11

1.11 73 37 22 15

1.10 70 38 23
TABLE 4.3

TRADE-OFF BETWEEN EXPANSION, K AND SIZE OF ENCODER AND
DECODER
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APPENDIX

Lemma 2.5.2: Define dK(n) as follows,

dK(n) =

Z dx (n — i)

800 6] 4 - (- k) <n <0

For all n > 0,

dK(n) = FK (n) —

imkmr+m—w*

Or equivalently, di(n) = Z ,B(K) [(]5 )}

Proof: The proof is by induction.

Base Case: n = 0. Follows by substitution.

Inductive Hypothesis: For 0 < m < (n — 1) we assume,

dK(m) = FK (m) —

(O [6]" + 1 -1

Now consider the case for m = n,

Case 1: 1<n<K—1

dx (n) = ZdK( i) =

>

de(z)+ Z d (i)

i=n—K

P- m”VW]+m—uﬂ

=1
+ 3 -0 (o] 4 -17]
i=n—K "
=2t — g0 [¢{] 4 [k -1
= Fic (m) = 0[] + 1 -1



Case 2: n > K.

K
dK (n - ’L)
=1

ie(n=i) = 609 [o°] " 1k 117

S
2
S
N—
I

~
Il
—

Il

eln—i)- 3 40 [69)" "+ S iK1

Il
M=
S|

i=1

Lemma 2.5.3: For n > 2,
dg(n) =2dg(n—1) —dg(n— K —1)
K
Proof: dg(n)= > dx(n—1)
i=1

:idK(n—i)—i—dK(n—K—l)—dK(n—K—l)

=dK(n—1)+f:dK(n—l—i)—dK(n—K—l)

i=1
=2dx(n—1)—dg(n— K —1) |

Lemma 2.5.4: For alln >0, |dx(n)| < 1/2

Proof:

K =2, dg(0) = —0.17 and dg (1) = 0.10.

For the rest of the proof we will assume K > 3.
Case 1: 2 — K <1 < 0. We need to show,

/2 1K -1 < 0 [69) <1/a - [ -

Since —ﬁgK) < —ﬂgK) [ngK)} < v < —B&K) {¢§K)
it suffices to prove,

2—K
() -89 [4] " <1/2- 1K -1
(&) [ ()] *7K 1
—B3 [dn } <0.1/2—[K—1]""'>0for K >3.
(b) And ,BgK) <1/2+[K —1]". Or equivalently,

([t + 165 —2k]) " < (K +1)/ 205 ~ 1)

Capocelli and Cull [7] establish that,
2—2/2K < ) <2 1/2K.
Note that,

([(K+ 1) ¢ — QKD_l < ([(K+1)(2—2/25)—2K])™"

Hence, it would suffice to show that,
([(K+1)(2—2/25) —2K]) "' < (K +1)/[2(K —1)]

Simplifying the above inequality yields,
( K + 1)2 S 2K +1

x (n) = B9 [o0]" + (1 — 17 n

If n > 2 and if for all 4, 2 < i < K,
|dx(n — )| < 1/2 then |dx(n)| < 1/2. The proof of this
statement is identical to the analogous proofs in Capocelli
and Cull [7] and thus omitted. Hence, it suffices to estab-
lish that for all K, if 2— K <i <1, |dk(i)| < 1/2. When

o

)
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This is true for K > 3.

Case 2: 1 = 1. We need to show that,
~1/2<1- 06 + [K -1 <172

Substituting the value of ﬂgK) and simplifying reduces

this inequality to,

2K(3K —1)/(3K2 +1) < ¢ < 2K (K +1)/(3 + K?)
(a) ¢{") <2K(K +1)/(3+K?)

() < 2. But 2K (K +1)/(3 + K2) > 2 for K > 3.

(b) 2K(3K —1)/(3K2 + 1) < ¢{*

Capocelli and Cull [7] establish that,
2-2/2K < ¢{F) <2 1/2K

Hence, it would suffice to show that,
2K(3K —1)/(3K%2+1) <2—2/2K

Simplifying the above inequality yields,
(BK2+1)/(K+1) < 2K

This inequality holds for K > 3. [ |



