Memory Allocation In Information Storage Networks!

Anxiao (Andrew) Jiang and Jehoshua Bruck
California Institute of Technology
Pasadena, CA 91125, U.S.A.

{jax, bruck}@paradise.caltech.edu

Abstract — We propose a file storage scheme which bounds the file-retrieving delays in a heterogeneous information
network, under both fault-free and faulty circumstances. The scheme combines coding with storage for better perfor-
mance. We study the memory allocation problem for the scheme, which is to decide how much data to store on each
node, with the objective of minimizing the total amount of data stored in the network. This problem is NP-hard for
general networks. We present three polynomial-time algorithms which solve the memory allocation problem for tree
networks. The first two algorithms are for tree networks with and without upper bounds on nodes’ memory sizes respec-
tively. The third algorithm finds, among all the optimal solutions for the tree network, the solution that minimizes the
greatest memory size of single nodes. By combining these memory allocation algorithms with known data-interleaving
techniques, a complete solution to realize the file storage scheme in tree networks is established.

Indexr Terms — Distributed networks, domination, error-correcting codes, file assignment, memory allocation,
NP-hard, quality of service (QoS), tree.

I. INTRODUCTION

Given a graph G(V, E), where each edge e € E has a length [(e), we define d(u,v) as the length of the
shortest path between vertex u € V and v € V, and call it the ‘distance between u and v’. For a vertex
u € V and a real number r, we define N(u,r) as the set of vertices within distance r from w, namely,
N(uar) = {IU‘IU ev, d(’“’a’“) < ’I"}.

We study the following problem in this paper:

Definition 1: The Memory Allocation Problem

INSTANCE: A graph G = (V,E). Every edge e € E has a length I(e). Every vertex v € V is associated
with a set R(v) = {(ri(v), ki(v))|1 <4 < ny}, which is called the ‘requirement set’ of v. Each vertex v € V' is
also associated with a parameter W,,;,(v), which is called the ‘minimum memory size’ of v, and a parameter
Winaz (v), which is called the ‘mazimum memory size’ of v.

QUESTION: How to assign a number w(v) (Wiin(v) < w(v) < Winez(v)) to each vertex v € V, with the
value of 37,y w(v) minimized, such that for any vertex u € V and for 1 <4 < ny, 3penu,rw) w(v) > ki(u)?
(Here w(v) is called the ‘memory size of v’. A solution to this memory allocation problem is called an optimal
memory allocation.)

COMMENTS: Each element in a ‘requirement set’ R(v) is a pair of numbers, written in the form as (r, k).
In the definition of this problem, both I(e) and r;(v) are non-negative real numbers, and k;(v), Wiin(v),
Winaz (v), and w(v) are all non-negative integers. O

We use the following example to illustrate the memory allocation problem and reveal its applications.

Ezample 1: Fig. 1 shows an example of the memory allocation problem. The graph G = (V, E) has 6
vertices; the number beside each edge is its length. A solution is also given: w(vy) = 3, w(ve) = 2, w(vs) = 2,
w(vy) = 5, w(vs) = 7, w(ve) = 3, which is shown in the figure. We claim without proof that no other solution
has a smaller value of >, oy w(v); readers can verify that the claim is true.

The memory allocation problem has applications in data storage. The distance between two nodes u € V
and v € V can be seen as the delay of transmitting data between those two nodes. And the requirement set
of a node v shows v’s requirements on data-retrieving delays: if (r,k) € R(v), then the maximum delay that
v can tolerate in order to retrieve k units of data from the network equals r. W, (v) and Wiy (v) are the

!This work was supported in part by the Lee Center for Advanced Networking at the California Institute of Technology.

w(vq) =3 R(V1) ={ (10, 7), (1.2, 11) }
R(V2) ={ (12,5)}
10 10 R(V3) ={ (13,5}
R(V4) ={ (06,5)}
R(Vs) ={ (16,12)}
R(Ve) ={ (1.0,3)}

Whin(VD) =0 Wmax(V1) =3
Whin(V2) =0 Wmax(V2) =5
Whin(Va)=1 Wmnax(V3) =6
Whnin(Va) =0 Wmax(V4) =5
Whnin(Vs) =3 Wmax(Vs) =10
Whnin(Ve) =0 Wimax(Ve) =8

Figure 1: An example of the memory allocation problem.

upper and lower bounds on the amount of data that can be stored on node v, and w(v) is the actual number
of units of data stored on v.

As an example, with the solution in Fig.1, the delays for v; to retrieve 7 and 11 units of data are 1.0 and
1.2 respectively; the parameters in R(v1) also guarantees the following fault-tolerant performance: when no
more than 11 — 7 = 4 units of data stored on nodes in N (v, 1.2) become inaccessible, the delay for v; to
retrieve 7 units of data will be no more than 1.2.

The memory allocation problem can also have many other applications. For example, the graph can
represent a transport network, and gasoline, food or medicine is stored on nodes. Then a solution to the
problem will bound the delays to transport certain amounts of the corresponding substance to every node.
a

The above example reveals that the memory allocation problem is related to data storage, but exactly how
it can be used for storing files in information networks is not shown. This problem is in fact a sub-problem of
a file storage scheme we propose. The scheme bounds the file-retrieving delays in a heterogeneous information
network, under both fault-free and faulty circumstances. And it combines coding with storage for better
performance. The scheme will be introduced in Section II.

The memory allocation problem is NP-hard for general graphs because the NP-complete dominating set
problem [1] can be reduced to it. In this paper we study the memory allocation problem for trees, and
present three polynomial-time algorithms. The first two algorithms solve the memory allocation problem
for trees with and without upper bounds on nodes’ memory sizes respectively. They have complexities of
O(q|V']3) and O(q|V|?), where g is the average cardinality of a requirement set. The third algorithm finds
a solution that minimizes the greatest memory size of single nodes, among all the optimal solutions for the
tree. It’s complexity is O(q|V |*log(Y — |XV|)), where Y is the greatest memory size of single nodes in some
memory-allocation solution, and X is the total memory size in that solution.

II. BACKGROUND

Research in file storage is becoming more active today with the appearing of more large information networks
such as the Internet. For popular public files, many schemes have been proposed to distributively store
replications of the files in different parts of the network, in order to shorten file-retrieving delay, reduce data
flow, balance load and improve data availability. Combining coding with storage can yield significantly better
performance. In [2] and [3] such schemes have been studied, where a file is encoded into a codeword using an
error-correcting code, and components of the codeword are distributively stored in such a way that for every
network node, it can retrieve enough components for file-recovering from memories within a fixed number of
hops. Both schemes aim to bound data-retrieving delay for quality-of-service (QoS). In those schemes, the

file is seen as a string of k symbols, and is encoded using an (n, k) code to get a total of n (n > k) symbols.
Say the code can correct up to e erasures, then any n — ¢ distinct symbols of the codeword are sufficient for
recovering the file. If an MDS code is used, then n — e = k.

We propose a scheme which generalizes the schemes in [2] and [3] in the following ways. Each network link
is assigned a length which represents the delay of transmitting the file over that link. Then the delay within
which a node can retrieve enough data for file-recovering, called the file-retrieving delay, equals the distance
from the node within which n — ¢ distinct codeword symbols are stored. We allow different nodes to have
different upper bounds on the file-retrieving delays, instead of having one uniform upper bound as in [2] [3].
What’s more, it’s desirable that the number of distinct symbols within a certain distance from a node grows
steadily when that distance increases — so that the file-retrieving delay will degrade gracefully when more
and more symbols become inaccessible (e.g., because of data loss or busy processors) — and we allow different
nodes to have different specifications on such a relationship. We also allow each node to have an upper bound
and a lower bound on the numbers of symbols it can store. (The lower bound can exist for various reasons,
e.g., a web server typically always stores a copy of each file it generates.) By representing the network with
a graph whose vertices and edges correspond to network nodes and links respectively, the scheme is formally
defined as follows.

Definition 2 (The Generalized File Storage Scheme) : The file is encoded into a codeword of n symbols, any
n— ¢ of which are sufficient for recovering the file. The network is modelled as a graph G = (V, E), where each
edge e € E has a length I(e). Each vertex v € V is associated with a set R(v) = {(r;i(v), ki(v))|1 <1i < ny},
called its ‘requirement set’, a ‘minimum memory size’ Wi (v), and a ‘mazimum memory size’ Wiae ().

The file storage scheme is to assign w(v) (Wpin(v) < w(v) < Wines(v)) codeword symbols to each vertex
v € V, such that for any vertex u € V and for 1 < i < n,, vertices in N(u,r;(u)) store at least k; distinct
symbols. Among all the solutions that satisfy the above conditions, the one with the minimum value of
Y vey w(v) is called optimal. O

The above scheme aims to guarantee quality-of-service (QoS) in both fault-free and faulty circumstances.
Each node can bound the file-retrieving delays at different degrees of data inaccessibility by appropriately
setting values in its ‘requirement set’. The scheme allows each node to have a separate requirement set, to
better accommodate the fact that in real networks, nodes typically have quite diverse QoS requirements.

Finding an optimal solution to the above scheme has two steps: deciding how many symbols to assign to
each vertex, called ‘memory allocation’, and deciding which symbols to assign to each vertex, called ‘symbol
mapping’. Usually these two steps are dependent on each other. But if n, the total number of symbols,
is sufficiently large, then ‘memory allocation’ becomes independent of ‘symbol mapping’, and becomes the
problem defined in Definition 1. Having n sufficiently large to make the memory allocation and the symbol
mapping independent doesn’t necessarily mean that n has to be very large. For example, it can be shown
that for tree networks, those two problems are always independent regardless of how large n is. If n is not
sufficiently large, a solution to the memory allocation problem will still provide us with a lower bound on the
amount of data to be stored in the network for the file storage scheme.

III. MEMORY ALLOCATION FOR TREES

Trees are important network structures. For example, trees are often used by backbone networks, by virtual
private networks (VPNs) [4], and as embedded networks. In the remaining of this paper, we’ll purely focus
on the memory allocation problem for a tree G(V, E).

The following proposition is self-evident.

Proposition 1 The memory allocation problem has a solution if and only if for any v € V and for 1 < i < n,,
ZUEN(U,W (v)) Wmaw ('U/) Z kz (U) o
From now on we always assume a, solution exists for the memory allocation problem.

For any two vertices v; and vy in a tree G = (V, E), we say ‘v; is a descendant of vy’ or ‘ve is an ancestor
of vy’ if v9 # v1 and vy is on the shortest path between v; and the root. We say ‘v1 is a child of v9’ or ‘vy is

the parent of v1’ if v; and vy are adjacent and v; is a descendant of ve. For any vertex v € V, we use Des(v)
to denote the set of descendants of v.

Definition 3 (An Optimal Memory Basis) : A set {w(v)|v € V'} is called an optimal memory basis if there
exists an optimal memory allocation for the tree G = (V, E) which assigns memory size wqp:(v) to every vertex
v € V, such that for any v € V, Wi (v) < w(v) < wepe(v). O

The following lemma shows how one can get a new optimal memory basis from an old optimal memory
basis by increasing memory sizes.

Lemma 1 wu;y is a child of uy in the tree G = (V,E). And {w1(v)|lv € V'} is an optimal memory basis.
Assume the following conditions are true for the memory allocation problem: for any vertex v € Des(uq), the
‘requirement set’ R(v) = 0; R(u1) has an element (r, k), namely, (r,k) € R(u).

We define S1 as S1 = N(ug,m — d(u1,u2)), and define Sy as So = N(ui,r) — S1. We compute the elements
of a set {wa(v)|v € V'} in the following way (step 1 to step 3):

Step 1: for allv € V, let wo(v) + wi(v).

Step 2: Let

X <+ max{0,k — Z Winaz(v) — Z wi (v)}
vES] vES)
, and let C < So.

Step 3: Let vy be the vertex in C that is the closest to u;—namely, d(vg,u1) = minyec d(v,uy). Let
wa(vg) < min{Wiaz(vo), w1(vo) + X}. Let X « X — (wa(vg) — wi(vg)), and let C < C — {vo}. Repeat Step
3 until X equals 0.

Then the following conclusion is true: {wa(v)|v € V'} is also an optimal memory basis. 0

The proof of Lemma, 1 is presented in Appendix I for interested readers.
The following lemma shows how one can transform one memory allocation problem into another by modi-
fying the ‘requirement sets’ and the ‘minimum memory sizes’.

Lemma 2 u; is a child of uy in the tree G = (V,E). And {wo(v)lv € V} is an optimal memory ba-
sis. Assume the following conditions are true for the memory allocation problem: for any vertex v €
Des(uy), the ‘requirement set’ R(v) = (; for any element in R(u1)—say the element is (r,k)—we have
2w N (s —d(us uz)) Wmaz (8) + 2ue N(urr)— N (us,r—d(ur us)) Wo () > k-

We compute the elements of a set {R(v)[v € V'} in the following way (step 1 and step 2):

Step 1: for allv € V, let R(v) + R(v).

Step 2: let (r,k) be an element in R(uy). If > oveN(ui,r) Wo(v) <k, then add an element (r — d(u1,u2), k —
D o0EN(u1 1) N(us,r—d(us uz)) Wo(v)) to the set R(us). Remove the element (r,k) from R(u1). Repeat Step 2 until
R(uy) becomes an empty set.

Let’s call the original memory allocation problem, in which the ‘requirement set’ of each vertex v € V is
R(v), the ‘old problem’. We derive a new memory allocation problem—which we call the ‘new problem’—in
the following way: in the ‘new problem’ everything is the same as in the ‘old problem’, except that for each
vertez v € V, its ‘requirement set’ is R(v) instead of R(v), and its ‘minimum memory size’ is wo(v) instead
of Wnin(v).

Then the following conclusions are true:

(1) The ‘new problem’ has a solution (an optimal memory allocation).

(2) An optimal memory allocation for the ‘new problem’ is also an optimal memory allocation for the ‘old
problem’. O

The proof of Lemma, 2 is presented in Appendix II.

Based on the above two lemmas, we naturally get the following memory allocation algorithm for trees.
The algorithm processes all the vertices one by one. Every time a vertex is processed, it uses the method in
Lemma 1 to update the memory sizes , and uses the method in Lemma 2 to transform the memory allocation
problem, until a solution is found.

Algorithm 1 [Memory Allocation on a Tree]

1. Initially, for every vertex v € V, let w(v) < Wiin(v).

2. Process all the vertices one by one in an order that follows the following rule: every vertex is processed
before any of its ancestors. For each vertex ¥ € V that is not the root, it is processed with the following two
steps:

Step 1: Treat 0, the parent of ¥ and the set {w(v)|v € V'} as the vertex ‘u;’, the vertex ‘us’ and the set
w1 (v)|v € V} in Lemma 1 respectively, and for each element in R(?) do the following two things: (1) treat
this element in R(?) as the element ‘(r, k)’ in Lemma 1, and compute the set ‘{wy(v)|v € V}’ as in Lemma 1;
(2) for every vertex v € V, let w(v) get the value of wo(v) — namely, w(v) wo(v).

Step 2: Treat ¥, the parent of ¥ and the set {w(v)|v € V'} as the vertex ‘u;’, the vertex ‘us’ and the set
“{wo(v)|v € V)’ in Lemma 2 respectively, and do the following two things: (1) compute the set ‘{ R(v)|v € V'}’
as in Lemma 2; (2) for every vertex v € V, let R(v) < R(v), and let Wipnin(v) < w(v).

Denote the root by v,p0t. The vertex vpoo¢ is processed in the following way:

Pretend that the root v,y has a parent that is infinitely far away. Treat v,o0t, the parent of v,,,: and
the set {w(v)|v € V'} as the vertex ‘u;’, the vertex ‘us’ and the set ‘{wi(v)|v € V'}’ in Lemma 1 respectively,
and for each element in R(v,40t) do the following two things: (1) treat this element in R(v,40) as the element
‘(r,k)’ in Lemma 1, and compute the set ‘{ws(v)|v € V}’ as in Lemma 1; (2) for every vertex v € V, let w(v)
get the value of wy(v) — namely, w(v) wa(v).

3. Output the following solution as the solution to the memory allocation problem: for each vertex v € V,
assign w(v) to it as its ‘memory size’.

O

A pseudo-code of Algorithm 1 is presented in Appendix III for interested readers.

Analysis shows that Algorithm 1 has complexity O(q|V|?), where |V| is the number of vertices and g is the
average cardinality of a requirement set, namely, ¢ = |—‘1,| Y vev |R(v)|. The complexity analysis as well as the
proof for the correctness of Algorithm 1 are presented in Appendix IV.

IV. MEMORY ALLOCATION FOR TREES WITHOUT UPPER BOUNDS ON MEMORY SIZES

In the memory allocation problem, every vertex v € V has a ‘maximum memory size’ W4, (v). If for every
v € V, Wiae(v) is infinitely large, then we say that there are no upper bounds on memory sizes. For such a
special case, some techniques can be used to get a memory allocation algorithm for trees of complexity less
than O(q|V'|?), which we will present in this section.

The new algorithm is very similar to Algorithm 1, except that in this new algorithm, a new notion named
‘residual requirement set’ is adopted. The notion is defined as follows. Say at some moment, each vertex v € V
is temporarily assigned a memory size w(v), and its ‘requirement set’ is R(v). For every element (r, k) € R(v),
there is a corresponding element (7, k) in the ‘residual requirement set of v’, denoted by Res(v), computed as
follows: 7 = r, and k = max{k — ¢ N(vr) w(w),0}. (The meaning of the element (7, k) is that the memories
of the nodes in N (v,7) needs to be increased by k so that 3, n(y,r) w(u) will be no less than £.)

We use ‘Algorithm 2’ to denote the new algorithm which finds solutions to the memory allocation problem
for trees without upper bounds on memory sizes. For simplicity of this paper, we omit the presentation of the
actual algorithm, which has a similar structure as Algorithm 1. We present the pseudo-code of Algorithm 2
in Appendix V for interested readers.

The complexity of Algorithm 1, which is O(g|V|?), is dominated by the complexity of updating memory
sizes — the memory sizes can be updated up to O(g|V|?) times, and each time up to O(|V|) memory sizes
might change. When there are no upper bounds on the memory sizes, with the help of ‘residual requirement
sets’, each time only one memory size will need to be updated, which has complexity O(1). So the complexity
of updating memory sizes is reduced from O(q|V|?) to O(g|V|?). Maintaining the ‘residual requirement sets’
also has a total complexity of O(g|V|?). So the complexity of Algorithm 2 is O(g|V|?).

V. MINIMIZING THE GREATEST MEMORY SIZE OF SINGLE NODES

5

Minimizing the maximum amount of resource assigned to a single place often has engineering importance
in resource assignment problems. In this section, we present an algorithm which finds, among all the solutions
to the memory allocation problem for a tree, a solution that minimizes the greatest memory size of single
nodes. That is, the algorithm finds an ‘optimal memory allocation’ whose value of max,cy w(v) is minimized.

Algorithm 3 [Memory Allocation on a Tree with Minimized Greatest Memory Size]

1. Use Algorithm 1 to find an optimal memory allocation. Say the optimal memory allocation assigns
memory size wep(v) to each vertex v € V. We let X < 3, oy wopt(v), and let Y < max,cy wopt (v).

In this algorithm we use ‘L’ and ‘U’ to represent the lower limit and the upper limit for the minimized
greatest memory size of single nodes; and we use ‘M in—maz’ t0 denote the minimized greatest memory size
(which is unknown yet). Since every optimal memory allocation’s total memory size of all vertices equals
X, Mpmin—maz must be no less than [%] Since we’ve already found an optimal memory allocation whose

greatest memory size is Y, Wiin_maee must be no greater than Y. So initially, we let L <+ |_‘Xv|'|, and let
U<+Y.

2. Use a binary search to find out the exactly value of Wi maz in the following way. Let m <« [#J
Use Algorithm 1 to find an optimal memory allocation for such a memory allocation problem: everything
in this problem is the same as in the original memory allocation problem, except that in this problem, the
‘maximum memory size’ of each vertex v € V' is min{m, Wy, (v)} instead of Wy, (v). If this problem has a
solution and in the solution the total memory size equals X, then it means that M,,;,_maes 18 no greater than
m, so we let U < m; otherwise, it means that My,;; maz iS greater than m, so we let L < m + 1. Repeat
this procedure until L and U become equal.

Now we have Wi _mae = L = U. Use Algorithm 1 to find a solution to the following memory allocation
problem: in the problem everything is the same as in the original memory allocation problem, except that
in this problem, the ‘maximum memory size’ of each vertex v € V is min{Wpin—maz, Wmin(v)} instead of
Win(v). The solution found is the solution whose greatest memory size is minimized.

O

The binary search has O(log(Y — [%])) steps; in every step Algorithm 1 is executed once. So Algorithm

V]

3 has complexity O(q|V|?log(Y — 2&)). (To see how large Y can be, note that Y is never greater than
MaAXycV,1<i<n, ki(v) or max,cy Winaz(v).)

[Concluding Remarks] It can be shown that for a tree network, with a memory allocation generated by
the algorithms in this paper, there always exists a way to map file symbols to the memories to realize the
file storage scheme proposed in Definition 2. The ‘symbol mapping’ uses a data-interleaving technique which
is a generalization of the result in [3]. So by combining the memory allocation algorithms presented in this
paper with the developed data-interleaving technique, a complete solution to realize the proposed file storage
scheme in tree networks is established.

References

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.
H. Freeman and Company, New York and San Francisco, 1979.

[2] M. Naor and R. M. Roth, “Optimal file sharing in distributed networks,” SIAM J. Comput., vol. 24, no. 1, pp.
158-183, 1995.

[3] A. Jiang and J. Bruck, “Diversity Coloring for Information Storage in Networks,” in Proceedings of the 2002 IEEE
International Symposium on Information Theory, Lausanne, Switzerland, 2002, pp. 381.

[4] A.Kumar, R. Rastogi, A. Silberschatz and B. Yener, “Algorithms for Provisioning Virtual Private Networks in the
Hose Model,” IEEE/ACM Transactions on Networking, vol. 10, no. 4, pp. 565-578, 2002.

APPENDIX

APPENDIX I

In this appendix, we present the proof of Lemma 1.

Proof: The following three conclusions can be easily seen to be true:

Conclusion (1): S; US2 = N(u1,r), and S; NSy = 0.

Conclusion (2): For any v € Sa, Wiin(v) < wi(v) < wa(v) < Wineg(v). For any v € V — Sa, Wiin(v) <
wi(v) = wa(v) < Winaz(v). And

Z wa(v) — Z wy(v) = max{0,k — Z Winaz(v) — Z wy (v)}

veV veEV vEST VESH

Conclusion (3):

Z Winaz(v) + Z wa(v) > k
vES] vES?

Now let’s use them to prove Lemma 1.

{wi(v)|v € V} is an optimal memory basis. So there exists an optimal memory allocation that assigns
memory size wept(v) to every vertex v € V, such that wi(v) < wep(v) for any v € V. By Definition 1 we
know ZveN(ul,r) wopt(v) > k. Since EveN(m,r) wopt(v) = E’UESl wopt(v) + Z’UESQ wOpt(v) < Z’UESI Winaz (v) +
D oves, Wopt(V), we get 3o co wopt(v) > k — 35, Winaz(v). And clearly 3, cq, wopt(v) > 3 ,cs, wi(v). By
conclusion (2), 3yes, w2(v) = Xyes, w2(v)+Xpey s, w2(v) =Xpev s, wi(v) = Xyes, w1(v)+Xes, wi(v) =
eV wa(v) — 2 vev wi(v) + EUESQ wi(v) = max{0,k — EveSl Winaz (v) — E’UES2 wi(v)} + ZUESQ wi(v) =
maX{EvESQ w1 (’U)’ k— Zv651 Winaz (’U)} So ZUESQ wOPt(’U) 2 ZUESQ UJQ(’U).

We compute the elements of a set {w,(v)|v € V'} in the following way (step 1 to step 3):

Step 1: for all v € V — Sy, let w,(v) <— wept(v). For all v € S, let wy(v) wi(v).

Step 2: Let Y < 3", Wopt(v) — Xpes, wi(v), and let C < Sa.

Step 3: Let vy be the vertex in C that is the closest to u;—namely, d(vp,u1) = minyec d(v,u1). Let
wo(vo) min{ Wiz (vo), w1(vo) + Y}. Let Y <+~ Y — (wo(vo) — wi(wp)), and let C < C — {vg}. Repeat Step
3 until X equals 0.

From the above three steps, it’s simple to see that the following must be true: for any v € V, w,(v) >
wa(v); for any v € V — Sy, w,(v) = wept(v); for any v € So, Winin(v) < wo(v) < Winaz(v); Ypey Wo(v) =
Y ovev Wopt(v), and Yo g wo(v) = Y e, Wopt(v). It’s easy to see that the following must also be true: if
there exists a vertex v; € Sy such that wy(v1) > wi(v1), then for any v € Sy such that d(v,u1) < d(v1,u1),
Wo(V) = Winaz (v); if there exists a vertex vy € Sy such that wy(ve) < Winez(v2), then for any v € Sy such
that d(v,u1) > d(va,u1), we(v) = wi(v). Therefore for any real number L, if we define Q as Q = {v|v €
S2,d(v,u1) < L)}, then 2 veQ Wo(v) > 2veQ Wopt (v)-

Let vy € V be any vertex such that R(vg) # 0, and let (rg, ko) be any element in R(vg). Clearly vy ¢ Des(uy).
Since S2 C Des(u1) U {u1}, N(vo,m0) = {v|v € N(vo,r0),v ¢ S2} U{v|v € N(vg,70),v € S2} = {v|v €
N(vo,r0),v ¢ S2}U{v|v € So,d(v,v9) < 1o} = {v|v € N(vo,r0),v ¢ So}U{v|v € S2,d(v,u1) < ro—d(ui,vo)}.
S0 Y veN(osro) Wo(V) = XueN(vosro) Wopt (V). Clearly 3 e n(yg re) Wopt(v) = Koo SO 3peN(ugmo) Wo(v) = Ko
Since Y, cy Wo(V) = X ey Wopt(v), the memory allocation which assigns memory size w,(v) to every vertex
v € V is also an optimal memory allocation.

For any v € V, Wpin(v) < wa(v) < wy(v). So {we(v)|v € V} is an optimal memory basis.

O

APPENDIX II

In this appendix, we present the proof of Lemma 2.

Proof: Conclusion (1) can be easily proved by using Proposition 1 and the assumption of this paper that
the ‘old problem’ has a solution. Below we give the proof of conclusion (2).

Consider an optimal memory allocation for the ‘new problem’ which assigns ‘memory size’ Wopt(v) to each
vertex v € V. Let © € V be any vertex such that R(7) # 0, and let (7, k) be any element in R(7). Either
(7, k) € R(v) or (7, k) ¢ R(v). If (,k) € R(v), then clearly Puen(o,r) Wopt(u) > k. Now consider the case
where (7, k) ¢ R(@)._Clearly in this case v = u1, and either 3, ¢ y(u, 7 wo(u) > k, or D ueN (ur,7) Wo(u) < k. If
YueN(ur,r) Wo(u) > k, since wopt(u) > wo(u) for any u € V, we have 3, c y(5,7) Wopt(u) = k. We define S as
S1 = N(ug,7 — d(u1,u2)), and define Sy as Sy = N(uy,7) — S1. Then if 37, y(u, 7 wo(u) < k, its simple to
see that (7 — d(u1,u2), k — Xyes, wogu)) € R(uz). So ZuEN(ﬁ,'F) 'Lf]oz)t('l{) = Yues; Wopt(t) + Xues, Wopt(u) >
k=3 ues, wolu) + Xucs, Wopt(u) > k. Therefore 3, n(5,7) Wopt(u) > k in all cases.

{wo(v)|v € V} is an optimal memory basis for the ‘old problem’. So there exists an optimal memory
allocation for the ‘old problem’ which assigns ‘memory size’ wep(v) to each vertex v € V, such that for any
v €V, wo(v) < wept(v).

We compute the elements of four sets — {wy(v)|v € V'}, {wa(v)|v € V}, {ws(v)|v € V}, and {wa(v)|v € V'}
— in the following way (step 1 to step 5):

Step 1: for any v € Des(uz), let wi(v) < wo(v). For any v € V' — Des(us), let w1 (v) < wept(v).

Step 2: for any v € Des(uz), let wa(v) <= wep(v) — wo(v). For any v € V' — Des(us), let wo(v) + 0.

Step 3: for any v € V, let w3(v) <= 0. Let Z < Y,y wa(v), and let C « V.

Step 4: Let vp be the vertex in C that is the closest to ug—mnamely, d(vp,u2) = minyec d(v,us). Let
w3 (vy) + min{Wy,az(vo) — wi(vg), Z}. Let Z < Z — w3(vg), and let C < C — {vg}. Repeat Step 4 until Z
equals 0.

Step 5: for any v € V, let wy(v) < wi(v) + ws(v).

From the above five steps, it’s simple to see that the following must be true: >, oy wopt(v) = X ey w1 (v) +
Ser 0r(0) = Sy wsv), and Toey wa(v) = Toey ws(v); for any v € V, wo(n) < ws(®) < Winaa(v):
for any real number L, 3" cnu,,0) W3(v) > Xyen(uy,r) w2(v); for any v € V, if wy(v) < Winez(v), then
ZUEN(U2,d(U,U2)) wg(u) = 2uev wa(u).

Let © € V be any vertex such that R(%) # 0, and let (7,
Des(us). Either (7,k) € R(9) or (#,k) ¢ R(9). If (k) € R
ZvEN('fJ,f) ’w3(’U) 2 EveN(@,f) wl() + ZvEN (u2,7—d(d,u2)) w3()
ZUEN(’U) wl() + EUEN (9,7) w2() ZvEN(ﬁ 7) wopt() > k

Now consider the case where (7,k) ¢ R(%). We define 7 as 7 = 7 + d(uy,up), define §; as §; = N(ug,#),
define S5 as Sy = N(uq,7) — Sl, and define k as k = k+ZUE§ wo(v). It’s easy to see in this case ¥ = ug, and

(7, k) € R(uy). If wy(v) = Winaz(v) for any v € N(ug,#), then clearly LveN (o) wa(v) > k because the new
problem has a solution. If there exists vo € N(usg,7) such that wa(vy) < Winaz(vo), then -, ¢y) walv) =
Yoves, W1(v) + Xpey walv) > 2oveN(ur) w1 (v) = Xyeg, W1(V) + Xoen(u,im) W2 (V) = Xoen(ur,i) Wopt(V) —
2ved w (v)>k 2vess wy(v) = k.

S0 Ypen(o,i walv) > k in all cases. So ¥,cy Wopt(v) < Ypey wa(v). Since we also have Y,y wy(v) =

Yvey Wopt (V) and Y, cy Wopt (V) < Dy cy Wopt(v), we get D ey Wopt(v) = D pey Wopt(v). So the optimal
memory allocation for the ‘new problem’, which assigns ‘memory size’ W,pt(v) to every vertex v € V, is also

k) be any element in R(%). Clearly 4 € V —
(9) then 3= ¢ n(o,m) wa(v) = Xpen(o,s) w1(v) +
veN (o,7) W1(V) F Dpe N(ua i—d(o,us)) W2 (V) =

an optimal memory allocation for the ‘old problem’. So conclusion (2) is proved.
a

APPENDIX IIT

In this appendix we present the pseudo-code of Algorithm 1.

Algorithm 1 [Memory Allocation on a Tree]

1. Label the vertices in V' as vy, v, - -+, vy according to the following rule: if v; is an ancestor of vj, then
i > j. Let w(v;) < Whin(v;) for 1 <4 < |V].

2. For i =1 to |V| -1 do:

{ Let vp denote the parent of v;. Let R(v;) < R(v;).
While R(v;) # 0 do:
{ Let (r, k) be any element in R(v;). Define S; as S; = N(vp,r—d(v;,vp)), and define Sy as Sy = N (v;,7)—Si.
Update the elements in {w(v)|v € V'} in the following way (step 1 and step 2):
Step 1: Let
X ¢+ max{0,k — Z Wnaz(v) — Z w(v)}
v€ES] vES?
, and let C' + S,.

Step 2: Let ug be the vertex in C that is the closest to v;—namely, d(ug,v;) = minyec d(u,v;). Let
Temp < min{ Wz (w), w(ug)+X}. Let X + X —(Temp—w(up)), let w(ug) < Temp, and let C < C—{ug}.
Repeat Step 2 until X equals 0.

Remove the element (r, k) from R(v;).

}

While R(v;) # 0 do:

{ Let (r,k) be any element in R(v;). If > ,cn(yr)w(u) < k, then add an element (r — d(vi,vp),k —
Do ueN (i) —N(vpr—d(vswp)) W(w)) to the set R(vp). Remove the element (r, k) from R(v;).
}

}
3. While R(vyy) # 0 do:
{ Let (r,k) be any element in R(v}y|). Update the elements in {w(v)|v € V'} in the following way (step 1 and

step 2):
Step 1: Let
X < max{0,k — Z w(v)}
UEN (vv|,r)
,and let C «+ V.

Step 2: Let ug be the vertex in C that is the closest to vy|—mamely, d(ug,v)y|) = minyec d(u,v)y).
Let Temp < min{Wyaz(uo), w(ug) + X}. Let X « X — (Temp — w(up)), let w(ug) < Temp, and let
C < C —{up}. Repeat Step 2 until X equals 0.

Remove the element (r, k) from R(v)y|).
¥

Output w(v1), w(ve), -+, w(v)y|) as the solution to the memory allocation problem.

O

Note that in the above pseudo-code, the values of ‘minimum memory sizes’ are not really updated because
it’s not necessary to do that, even though it has been used in other parts of the paper as a helpful tool for
analysis.

APPENDIX IV

In this appendix, we prove the correctness of Algorithm 1, and analyze its complexity.
Theorem 1 Algorithm 1 is correct.

Proof: At the beginning of Algorithm 1, the value of each w(v) (v € V) is set to be Wy (v). Clearly at
this moment, {w(v)|v € V} = {Wyin(v)|v € V} is an ‘optimal memory basis’.
Then Algorithm 1 processes all the vertices one by one. Each vertex — including the root, in fact — is
processed with the following two steps:
Step 1: Modify the value of the set {w(v)|v € V'}, using the method in Lemma 1.

Step 2: Modify the values of {R(v)|v € V} and {Wyin(v)|v € V}, using the method in Lemma 2.
(Therefore the parameters in the memory allocation problem are changed. Using the terms in Lemma 2, the
memory allocation problem is changed from an ‘old problem’ to a ‘new problem’.)

It’s easy to prove by induction that the following two assertions are true:

Assertion 1: Every time a vertex is processed, after step 1, the set {w(v)|v € V} is still an ‘optimal
memory basis’.

Assertion 2: Every time a vertex is processed, after step 2, the ‘new problem’ still has an solution, and
any solution of the ‘new problem’ is also a solution of the original memory allocation problem.

When all the vertices are processed, all the ‘requirement sets’ become empty sets, so at this moment the
‘optimal memory basis’, which is {w(v)|v € V'}, is also an optimal memory allocation. So Algorithm 1 finds
the correct solution.

O

Complexity analysis: Algorithm 1 needs two tools for its execution: a distance matrix recording the
distance between any pair of vertices, which takes time complexity O(|V'|?) to compute; and for every vertex
v, a table ordering all the vertices according to their distance to v — computing all these |V'| tables has
time complexity O(|V|?), too. With these two tools available, the algorithm processes all the vertices one by
one. Let g denote the average cardinality of a requirement set in the original memory allocation problem,
namely, ¢ = ‘17| Y vev |R(v)|- So originally there are totally ¢|V| elements in all the requirement sets. When
the algorithm is computing, every time an element in a vertex’s requirement set is deleted, a new element
might be inserted into the vertex’s parent’s requirement set — and in no other occasion will a new element be
generated. Each vertex can have at most |V| — 1 ancestors. So during the whole period when the algorithm
is computing, there are no more than ¢|V|? elements — old and new, in total — in all the requirement sets.
Every time a vertex is processed, all the elements in its requirement sets are processed in the following way
— for each element, the set {w(v)|v € V'} and the set {R(v)|v € V'} are updated, which has time complexity
O(|V])- So the complexity of Algorithm 1 is O(|V|? + [V |2 + ¢|V|? - |V]), which equals O(q|V|?).

APPENDIX V

In this appendix we present the pseudo-code of Algorithm 2.

Algorithm 2 [Memory Allocation on a Tree without Upper Bounds on Memory Sizes]
1. Label the vertices in V' as v1, vg, - -+, vy| according to the following rule: if v; is an ancestor of v;, then
i > j. Let w(v;) < Wpin(v;) for 1 <4 < |V|. Let Res(v;) < @ for 1 <4 < |V|. For 1 < i < |V], and for
each element (r, k) € R(v;), do the following: if k — 3=, c y(y, -y w(v) > 0, then let Res(v;) < Res(v;) U {(r, k —
et W)}
2. For i =1 to |V| -1 do:
{ Let vp denote the parent of v;. Let Q(v;) < Res(v;), and let z < 0.
While Q(v;) # 0 do:
{ Let (r, k) be any element in Q(v;). If r < d(v;,vp), then let z < max{z,k} and remove the element (7, k)
from the set Res(v;). Remove the element (r, k) from Q(v;).
}
Let w(v;) + w(v;) + x.
For j = i+ 1 to |V|, and for every element (r,k) € Res(v;), do the following: if » > d(v;,v;), then let
(r,k) < (r,k — z); if kK <0, then remove the element (r, k) from Res(v;).
For every element (r,k) € Res(v;) do the following: if & > z, then let Res(vp) < Res(vp) U {(r —
d(vi,vp),k — z)}.
Let Res(v;) < 0.
}

3. Let z + 0.

While Res(v)y|) # 0 do:
{ Let (r,k) be any element in Res(vjy|). Let = < max{z,k}. Remove the element (r,k) from Res(v).
}

Let w(v)y|) « w(vy|) + 2.

4. Output w(v1), w(ve), -+, w(vyy|) as the solution to the memory allocation problem.

O

