Floating Codes for Joint Information Storage in
Write Asymmetric Memories

Anxiao (Andrew) Jiang Vasken Bohossian Jehoshua Bruck
Computer Science Department Electrical Engineering Department Electrical Engineering Department
Texas A&M University California Institute of Technology California Institute of Technology
College Station, TX 77843-3112 Pasadena, CA 91125 Pasadena, CA 91125
ajiang@cs.tamu.edu vincent@paradise.caltech.edu bruck@paradise.caltech.edu

Abstract—Memories whose storage cells transit irreversibly ¢ cell states. The state of a cell can be read by measuring
between states have been common since the start of the datathe threshold voltage. Programming and reading cells are fast;
storage technology. In recent years, flash memories and other however, rewriting data is much more complex. Most of the

non-volatile memories based on floating-gate cells have become a; it . . s to | tates f iti
very important family of such memories. We model them by the Ime, It requires moving cells 1o lower states for rewriling

Write Asymme’[ric Memory (WAM), a memory where each cell data, which means to remove electrons from the cells. In flash
is in one of ¢ states — state 0, 1;--, ¢ — 1 — and can only transit memories, cells are organized into blocks. A typical block
from a lower state to a higher state. Data stored in a WAM ysing binary cells stores 64, 128 or 256 kilobytes of data. Due
can be rewritten by shifting the cells to higher states. Since the to circuit complexity reasons, to rewrite, first the whole block

state transition is irreversible, the number of times of rewriting has to b d (which o | Il th s of th
is limited. When multiple variables are stored in a WAM, we as to be erased (which means to lower a ecelso e

study codes, which we calfloating codesthat maximize the total ~block to the O-state), then all the cells are reprogrammed. This
number of times the variables can be written and rewritten. happens even if only one cell really needs to lower its state for

In this paper, we present several families of floating codes the rewriting, and it leads to a writing speed abo0t times
that either are optimal, or approach optimality as the codes get gjower than reading. Therefore, it will be very beneficial to
longer. We also present bounds to the performance of general design codes for storing data such that the data can be rewritten
floating codes. The results show that floating codes can integrate . -
the rewriting capabilities of different variables to a surprisingly ~many times before the block has to be erased. Reducing the
high degree. number of block erasing operations is critical not only for
reducing the average rewriting time, but also for the flash
memory’s lifetime. Every erasing reduces the quality of cells,

Memories whose storage cells transit irreversibly betweamd currently, a flash memory’s lifetime is bounded by about
states have been common since the beginning of the daBd program-erase cycles. Although technically speaking, a
storage technology. Examples include punch cards and digitell can return to a lower state through block erasing, in this
optical discs, where a cell can change from a O-state to agaper, we are interested in the writing and rewriting of data
state but notvice versa In recent years, flash memories anthetween two block erasing operations. In that period, the cells
some other non-volatile memories based on floating-gate caltm only go from lower states to higher states.
have become a very important family of such memories. TheyWe model the memories mentioned above using the fol-
have good properties including high data density, fast readilugving Write Asymmetric Memory (WAM) model. A WAM
time, physical robustness, etc., and have been widely useccamsists of n cells, where each cell hag states: state
mobile, mass as well as standard storage devices. 0,1,---,q — 1. Such a cell is called g-ary cell. A cell can

We use flash memories as a typical example to explajgo from statei to statej if and only if ¢ < ;.
the basic storage mechanisms based on floating-gate celldVAM is a straightforward generalization of the Write
A flash memory consists of floating-gate cells as its basi@nce Memory (WOM) model, firstly proposed by Rivest and
storage elements. In most products, a cell has two stat8samir [10], whereg = 2. WAM is also a special case of
but to increase data density, multi-level storage (where a ctile Generalized WOM model [3], where the state transition
has 4 to 256 or even more states) is being developed. Fodiagram of a cell can be any directed acyclic graph.
cell with ¢ states, we denote its states byl,---,q — 1. To Historically, there has been research on WOM codes, where
write (program) a cell, the hot-electron injection mechanismsingle variable is stored in a WOM, and the code enables it to
or the Fowler-Nordheim tunneling mechanism is used to injelse rewritten multiple times [10]. In practice, a memory stores
electrons into the cell, where the electrons become trappethny — let's sayk — variables. If we want to apply the codes
The number of trapped electrons in a cell determines th® a memory, a simple approach is to partition the memory
threshold voltage of the cell: the more electrons, the higher thito & parts, where each part stores a variable independently.
threshold voltage. The number of trapped electrons is choserThis simple approach, however, has a serious limitation. If
to concentrate aroung discrete levels, corresponding to thehe rewriting frequencies are very nonuniform for the variables

I. INTRODUCTION

— common in many applications — the WAM becomes unusal{l@)writes between two erasing operations, useful for improv-
very soon. For example, say that each storage part allowsg writing speed and prolonging the memory lifetime. The
times of rewriting of a variable. Once one of tkevariables use of error-correcting codes for improving data reliability in
needs rewriting for thét+1)-th time, the WAM can no longer flash memories has been proposed in some works [1] [5].
meet the requirement, even if the other 1 variables have
not been rewritten yet. Therefore, it will be very beneficial HI.
to integrate the rewriting capabilities of the variables, so thatIn this section, we present a floating code for binary
the variables can be rewritten many times regardless of whatiables. That is| = 2, so each variable has value 0 or 1. In
the rewriting sequence is. As we will show in this paper, sudtash memories, the 16 bits of a word are usually stored at the
an integration is feasible, many times to a surprisingly higkame position of 16 parallel blocks. Consequently, a rewriting
degree. We call the codes that achieve it Bheating Codes operation on a word becomes the rewriting of a bit in a block.
We formally define the problem we study as follows. Therefore, it is important to study the caselof 2.
variables are stored in a WAM, where each variable takes itsThe code we present is fér = 2,1 = 2 and arbitraryn
value from an alphabet of siZze {0,1,---,1—1}. The WAM and ¢. The code maximize$, the number of rewrites, and
hasn g-ary cells. Initially, all the cells are in the O-state, and alk thus optimal. We prove the code’s optimality by providing
the variables have the default value 0. Each rewriting updageneral upper bound tofor floating codes, which is not
the value of one variable. We ude;,vs,---,v;) — called limited to the casé = 2,1 = 2.
the variable vector— to denote the values of thevariables,) .)
wherev; € {0,1,---,1— 1}. We use(cy, ¢s, - -, cn) — called A. Optimal Floating Code fok = 2,1 = 2 and Arbitraryn, ¢

the cell state vector to denote the states of thecells, where ~ Three examples of the code are shown in Fig. 1, correspond-

AN OPTIMAL CODE FORTWO BINARY VARIABLES

¢; € {0,1,---,¢ — 1}. A cell state vector(cy,ca,---,¢,) IS ington = 1,2 and 3, respectively. We comment that= 1,2

said to beaboveanother cell state vectqi;,ch,---,c,,) if are, in fact, degenerated cases; it is only whea 3 or more

¢; > ¢, for all i. When the cells change their states, they cahat the code reveals the full structure of its construction.

only change to a state vector above the current one. The numbers inside each circle are a cell state vector,
A floating codehas two functionsg : {0,1,---,¢g—1}" — while the bold numbers beside the circle are the corresponding

{0,1,---,1—1}*, and3: {0,1,---,¢g—1}" x {1,2,---,k} x variable vector. For example, in Fig. 1(a), the cell state vector
{0,1,---,1—1} — {0,1,---,¢ — 1}". Functiona maps each (c;) = (3) corresponds to the variable vector, v2) = (0,0);

cell state vector to a variable vector, which is used to decotte Fig. 1(c), the cell state vectofci,cs,c3) = (1,0,0)
(interpret) the stored data. Functighshows how to rewrite: corresponds to the variable vectér,,v2) = (1,0). The
given the current cell state vector and the information on whightrows leaving a cell state vector shows how the next rewriting
of the k variables is to be updated to which new value, thghould be performed when this cell state vector is the current
function 8 outputs the new cell state vector. The new cell statell state vector. For example, for the code in Fig. 1(c), if
vector should correspond to the new values of the variablethe current cell state vector {4, 0,0) and the new rewriting

A floating code allowing times of rewritingis a code that request is to change the first variable to ‘0’ (which means to
allows the variables to be rewritten at leastimes in total, change the variable vector frofi, 0) to (0,0)), then the cell
regardless of what the sequence of rewriting is. A fundamensthte vector will becomél, 1,0). Similarly, if the sequence
objective of floating codes is to maximize of rewriting changes the variable vector @0) — (1,0) —

In the following, we first present a brief overview of the(l,1) — (0,1) — --- (note that every rewriting changes the
related work. Then, we present the constructions of sevevalue of just one variable), the cell state vector changes as
families of floating codes, which either are optimal, or ap®,0,0) — (1,0,0) — (1,0,1) — (1,0,2) — - --
proach optimality as the codes get longer. We also preseniVe define the cell state vectors of tli¢h generationto
upper and lower bounds tofor general floating codes. be the cell state vectors reachable aftdéimes of rewriting.

In Fig. 1, all the cell state vectors in the same generation are
placed at the same horizontal level. For example, in Fig. 1(c),

WOM codes were first studied by Rivest, Shamir [H3] the cell state vectors in the 2nd generation(dré, 0), (1,0, 1)
al., where a single variable is stored in a WOM and caand(0, 1,1). The codes in Fig. 1 are all for arbitrarily large
be updated multiple times. Capacities of WOMs have beand they all have periodic patterns; specifically, every code is
studied [3] [4] [6] [8] [10] [11], and multiple classes of codesa repetition of the structure shown in the dotted box labelled
have been invented. The majority of those codes are bindoy, “one period.” To see how, notice that the first generation in
and they include tabular codes [10], linear codes [2] [10fhe dotted box contains two cell state vectors corresponding to
codes constructed using Golay codes [2] or projective gevo different variable vectors, and so is true for the generation
ometries [9], etc. Besides WOM, constrained memories aleb cell state vectors directly following the dotted box; what's
include write efficient memory (WEM), write unidirectionalmore, the latter two cell state vectors can be obtained from the
memory (WUM) and write isolated memory (WIM) [8]. former two cell state vectors by raising every cell’s state by

There is no work we are aware of that addresses the wdFor example, in Fig. 1(b), the former two cell state vectors
of codes for flash memories for increasing the number afe (1,0) and (0,1); when we raise every cell's state by 2,

II. RELATED WORK

Floating Code Construction: k = 2,1 = 2 and arbitrary n,q

Fig. 1. Three examples of an optimal floating code ko= 2,1 = 2 and
arbitraryn,q. (@n =1. (b)) n = 2. () n = 3.

we get(3,2) and (2, 3), the latter two cell state vectors.) The
code is built for arbitrarily largey in the following way. A
“period” in the code contain8n — 1 generations. The second

period directly follows — and has the same structure as — the

first period, except that: (i) every cell’s state is raised by 2, (ii
the pair of variable vector§l, 0) and (0,0) are switched, and
the pair of variable vector§), 1) and(1, 1) are also switched.
Fori=1,2,3,---, the (2i 4+ 1)-th (resp.,(2: + 2)-th) period
has the same structure as the 1st (resp. 2nd) period except
every cell's state is raised by.

If ¢ is finite, it is simple to get the corresponding code: just

truncate the above code to the maximum generation, subject

to the constraint that every cell’'s state is at mgst 1.
We present the formal construction of the code in Fig. 2
to 3. The construction is in fact quite regular and elegant.
It is straightforward to verify the correctness (validity) of
the code in Fig. 2 to 3. The key step is to verify that for every
cell state vector, its two outgoing arrows enter two cell state

vectors in the next generation that correspond to two different 5

and correct variable vecto(s,, v;). It is also straightforward
to verify the correctness of the following theorem.

Theorem 1:For the code constructed in Fig. 2 and Fig. 3
t=(n—1)(g—1)+[%].

We see that the floating code integrates the WAM'’s rewritin
capabilities for different variable to a very high degree. Let’
call >-"_, ¢; the weightof the cell state vector. Clearly, every
rewriting needs to increase thateight by at least 1. If the
n cells are split into two and used independently by th
k = 2 variables,t can never excee§ - (¢ — 1). The floating
code, however, achieves ~ (n — 0.5)(¢ — 1). The code
construction in Fig. 2 to 3 can be easily converted into ver
efficient encoding (for rewriting) and decoding (for mappin
cell state vectors to variable vectors) algorithms. Due to the

1. Fori=1,2,---,n

. Fori=nn+1,---

hat

. Note that by the above construction, t{n — 3)-th generation

— 1, do:

The i-th generation of cell state vectors contains all the 1
elements that satisfy the following properties: (1) Among the f
i+ 1 cells,: of them are in state 1 and one of them is in state
(2) The lastn — (i + 1) cells are all in state 0.

In the i-th generation, if a cell state
(1,1,---,1,0,0,---,0) (that is, the first: cells are in

state 0, and the last — i cells are in state 0), then it correspongds

to the variable vector(vi,v2) = (1,0) (if ¢ is odd) or

(v1,v2) = (0,0) (if ¢ is even); otherwise, the cell state vectp

corresponds to the variable vectar;, v2) = (0, 1) (if ¢ is odd)
or (vi,v2) = (1,1) (if ¢ is even).

Let a denote a cell state vector in tif¢ — 1)-th generation. The
two outgoing arrows of: are as follows: one arrow goes to th
cell state vector in the-th generation where the firgtcells are

in state 1 and the last — 7 cells are in state 0; the other arrow

goes to the cell state vector of tii¢h generation that is the sam

asa except that itz + 1)-th cell is in state 1 instead of state 0.
. Note that by the above construction, tfie — 1)-th generation

containsn cell state vectors, where each cell state vectorhag

cells in the state 1 and one cell in the state 0. Let's denote t
n cell state vectors by, s2, -+, sp. Fors; (1 <i < n), let’s

denote then—1 cellsin state 1 b (; 1), br(s,2)s***» Or(i,n—1);

and denote the cell in state 0 By.(;). (1 < 7(3,7) < n.)

,2n — 3, do:

The i-th generation of cell state vectors contaim§ — n + 2)

elements, which we partition inta groups. Forj = 1,2,---,n,

thej-th group contains all the—n+2 = [i—(n—1)]+1 elements
that satisfy the following properties: among thie- (n — 1)] + 1

cells bﬂ'(j,l): bﬂ.(j72), sy, bfr(j,i—(n—l)+1)v i — (n — 1) of them
are in state 2 and one of them is in state 1; the— ¢ — 3

Cells by (ji—(n—1)+2)s Ox(jim(n—1)+3)> "> are all
in state 1; the celb,;) Is in state 0.

In the i-th generation, f)or a cell state vector in theh group,
if the Celle.,rO,l) s b‘lr(j,Q)? ey

bTr(j,’!’L71>

br(j,i—(n—1)) are all in state 2,
then it corresponds to the variable vectet, v2) = (1,0) (if ¢
is odd) or(v1,v2) = (0,0) (if 4 is even); otherwise, the cell stat
vector corresponds to the variable vectofi,v2) = (0,1) (if ¢
is odd) or(vi,v2) = (1,1) (if ¢ is even).

Let a denote a cell state vector in th{¢ — 1)-th generation and
in the j-th group. (Ifi — 1 = n — 1, then leta be s;.) The two

outgoing arrows ofz are as follows: one arrow goes to the cell

state vector in the-th generation and thg-th group where the
i—(n—1) cellsby(;1y,br(j2)> s br(ji—(n—1)) are allin

state 2; the other arrow goes to the cell state vector in:itie
generation and thg-th group that is the same asexcept that its
cell by (j,i—(n—1)+1) is in state 2 instead of state 1.

containsn(n — 1) cell state vectors, where each vector has 2

cells in state 2, one cell in state 1, and one cell in state 0.

The (2n — 2)-th generation of cell state vectors containst+
elements, which we partition into two groups. The first gro|

contains all then vectors where:x — 1 cells are in state 2 and ong

cell is in state 0. The second group contains all (@ vectors

vector is

rst
0;

=

]

[]

ose

D

up

wheren — 2 cells are in state 2 and two cells are in state 1. All

the cell state vectors in the first (resp., second) group corresy
to the variable vectofvy,v2) = (0, 0) (resp.,(1,1)).

The (2n — 1)-th generation of cell state vectors contains+
1 elements, which we partition into two groups. The first gro
contains all then cell state vectors whene— 1 cells are in state 2,
and one cell is in state 1; the second group contains one cell
vector where all the: cells are in state 2. The cell state vectq
in the first (resp. second) group correspond to the variable ve
(U17 UQ) = (170) (resp'(07 1))

Let a denote a cell state vector in tf{gn — 3)-th (resp.,(2n —
2)-th) generation. The two outgoing arrows @fenter two cell
state vectors of thé2n — 2)-th (resp.,(2n — 1)-th) generation,
respectively in the first group and in the second group, both
which areabovea. (To be continued in Fig. 3.)

pond

up
state

rs
ctor

of

space limitation, we skip the details.

Fig. 2.

Floating Code Construction: Continuation of Fig. 2

6. The above2n — 1 generations of cell state vectors form the fi
period of the code. Repeat the period’s structure to get the 2nd,- 3rd
periods (as described before in this paper). Just remember that for the
i-th period, ifi is even, then switch the variable vector, 0) with (1, 0),
and switch the variable vectdi, 1) with (0, 1). If ¢ is finite, truncate
the code to the maximum generation subject to the constraint that a
cells’ states are at mogt— 1.

| the

Fig. 3.

odd(z) = 0. Let (a]*a3? - - -
of z; consecutiveu;’s, followed by x5, consecutivess’s, - - -,
ended withx;, consecutiven;,’s. For example(12011103) is

Those WOM codes are for updating a single variable in a
st binary WOM. The floating codes we present are, respectively,
for rewriting two or three variables ip-ary WAMSs.

We define a functionodd(x) as follows: for any non-
negative integerz, if x is odd, odd(x)

1, otherwise,
a;") denote a string that consists

(1,1,0,1,0,0,0).

B. A General and Tight Upper Bound to

We now present a general upper boundt tavhich holds
for any k,1,n and q. The bound can show that the code in
Fig. 2 and Fig. 3 is optimal.

Theorem 2:For any floating code, ifv > k(I — 1) — 1,
thent < [n— k(I —1) 4+ 1] - (g — 1) + | FE=DH=D) |- i
n<k(l—1) -1, thent < M1,

Proof: Due to the space limitation, we present only the
sketch of the proof here. Please refer to [7] for the details. The
idea is to show that for any floating code, whep> k(I—1)—

1, there is a sequence of at mést— k(I —1)+1]-(¢—1) +
LWJ rewriting operations after which no more
rewriting can be performed. The case< k(I —1) —1 can be
analyzed similarly. We find such a “bad” sequence of rewriting
operations using the following method. For= 0,1,2---,
after thei-th rewriting operation, we use a s€f to remember
the k(I — 1) — 1 cells whose states are the lowest. Tkt
rewriting operation is selected in this way: if all the choices
for the rewriting increases theeight of the cell state vector
by only one, we select théth rewriting operation to be the
one that raises the state of a cell outskje; otherwise, we
select thei-th rewriting operation to be the one that increases
the weight of the cell state vectdoy at least two.

Let ay,as,---,a, denote then cells, and Ietc§ denote the
state of thej-th cell after thei-th rewriting operation. ((<
¢ < q—1) Let P = Daes(@—1- %), and letQ;
>a;¢s, (@ — 1 —cj). Let 1 denote the number of rewriting
operations in our rewriting sequence. With a careful inductive
analysis, we show that for all, to —i < Q; + [£:]. B
replacingi with 0, we obtain the final conclusion. []

By pluggingk = 2 and! 2 into Theorem 2, and
comparing it with Theorem 1, we get the following conclusion.

Theorem 3:The floating code presented in Fig. 2 and Fig. 3
is optimal, namely, it maximizes the number of rewrites

The above observation also shows that in some cases, the
upper bound presented in Theorem 2 is tight.

IV. NEARLY OPTIMAL LINEAR CODES

In this section, we present two linear codes of similar
structures for binary variables. Both codes héwe, .t =
(¢ — 1)n + o(n). Since all floating codes have< (¢ — 1)n,
the two codes approach optimality as— oc.

In both codes, every cell essentially corresponds to an
integer, and a linear combination of those integers form the
numerical representation of thle variables. We borrow the
idea from the WOM codes proposed by Fiat and Shamir in [3].

Below are the constructions of the two floating codes.

Code Construction Ik = 2,1 = 2,n > 3, arbitrary ¢

In this code, a valid cell state vectde,ca,---,¢p)
always satisfies the following two constraints: {1}, 7,
lei — ¢l <1;(2) (e1,¢2, -, ¢) = ((a+ 1) a2 (a +
1)*3) for somea, x1,x2,x3 Where0 < a < ¢g— 1,21 +
o + x3 = n,x9 > 1. (For example, whem = 5, ¢ = 3,
(1,1,1,0,1) = (1%0'1') and (1,1,1,1,2) = (2°1%2")
are both valid cell state vectors.)

A cell state vector((a + 1)**a®2(a + 1)*3) corresponds
to the variable vectofv, v3) in the following way:v; =
odd(z1), v2 = odd(x3).

The rewriting operation is as follows. When the rewriting
changes the value of variablg (resp.,v2), we usually
increaser; (resp.,z3) by 1 and decrease, by 1. The
exception happens wher, = 1; in that case, we first
raise all the cells to the state+ 1 (which makesr; =
x3 = 0 and x5 = n), then increase:; or z3 (or both)
based on necessity.

For example, assume that= 4, ¢ = 3 and the rewriting
operations change the variable vector, v2) as follows:
(0,0) — (0,1) — (0,0) — (1,0) — (1,1). Then,
the cell state vector changes as follow8;0,0,0) —
(0,0,0,1) — (0,0,1,1) — (1,0,1,1) — (2,1,1,2).

Theorem 4:When n is odd, the floating code in Code
Construction | hag = (n — 1)(¢ — 1); if n is even, it has
=n-2)(¢g—-1)+1.
We skip the proof for theorem 4 due to the space limitation.
Interested readers please see [7]. By theorems 2 and 4, we see
that wheng = 2, the above code is strictly optimal.

Code Construction Ik = 3,1 = 2,n > 5, arbitrary ¢

In this code, a valid cell state vectdey,ca, -, c,)
always satisfies the following two constraints: {1}, j,

le; —¢;] < 1; (2) the cell state vector is either in the form
((a+1)*"*a™(a+ 1)*3a™ (a + 1)%5), Wherer:1 x;
n,xe > 1,24 > 1 (which we callform 1), or in the form
((a+1)*1a®2(a+1)*), wherezy +zo+x5 = n,x9 > 1
(which we callform I1).

A cell state vector corresponds to the variable vector
(v1,v2,v3) in the following way: if the cell state vector
is in form |, then v; = odd(z1), va = odd(zs),

v3 = odd(xs); if the cell state vector is ifiorm I, then

v1 = odd(z1), v2 = 0, v3 = odd(zs).

The rewriting operation is as follows. When the rewriting
changes the value of variablg (resp.,v3), we usually
increaser; (resp.,z5) by 1 and decrease, (resp.,z4 or

xo, depending on if the cell state vector isfiorm | or

belongs toS’ if and only if it is a solution to the following

form 1) by 1. When the rewriting changes the value ofroblem: partition a path ofv + n vertices inton or more

variablevy, we either increase; by 1 and decreass, or

the cell in the middle of the sequenced$ from statea
to statea+1 (when the cell state vector is farm I1). If z

sub-paths such that far= 1,2, -
x4 by 1 (when the cell state vector isform [), or change d; > 0 vertices. Thereforel,S’| = (”*”)
smallest positive integer such th@t’™") > I*.

k consecutive rewriting operations can make the variables

,n, the i-th sub-path has
Sow is also the

or z, becomes zero due to the above operation, the celange to or go through any of tli€ possible values. If we

state vector is reevaluated, and the operation descrits®a; (fori=1,2,---,

n) as the increase in; — the state of

above is carried out again based on the values of ttee i-th cell — and consider the way andw are defined, we
variables. If the above operation cannot be carried osg¢e that whatever the current cell state vector is, there kexist
any more when the cells remain in the current two statesnsecutive rewriting operations that increaseswieght of
— statea and staten + 1 — then we start to use the twothe cell state vectob ", ¢; by at leastw. Now consider the
statesa + 1 anda + 2, in the same way as we have usedirst batch of sucht rewriting operations, the second batch,

the two statess anda + 1 above.

and so on. Since the maximum weight of the cell state vector

The following examples show how the code workss (¢ — 1)n, we gett < [{Z=1"]k.

Assume thatr = 10,q = 3. (1) If the cell state vector
is (110910), then (1)1,’0271}3) =
rewriting operations changév;,vs, vs) to (0,0,0) and
then to(0, 1,0), the cell state vector changes(t0%1°),

and then to(120311041°)

(1,0,0); if the next two very similar. Please see [7] for its details.
Whenk or [is sufficiently large, theorem 6 gives an upper
bound to¢ that is roughly

(2) If the cell state vector is glementary lower bound as well as an exact evaluation for

The proof for the slightly more restrictive cage> 2 is

(g—1)nk
T 1 k-

Now we present an

n)nlin

(1°0'1'0"1"), then (vi,v2,v3) = (1,1,1); if the next ; pue to the space limitation, we skip their proofs. Please

two rewriting operations chang@l,vg,vg) to (0,1,1)

refer to [7] for the detailed proofs.

and then to(() 1,0), the cell state vector changes t0 Theorem 7:There exist floating codes where > B

, and then t
15011101t d th 2014211520),

E=at

Theorem 5:The floating code in Code Construction Il has Theorem 8:Whenk, [, g are fixed and» — oo, there exist

t>(n—6—2logyn)(g—1)+2.

floating codes wheré =

(g — n+ o(n).

Proof: We present the sketch of the proof here becauseTheorem 8 shows that when — oo, floating codes
of the space limitation. Please see [7] for details. The madan integrate the WAM's rewriting capabilities for different
idea is that every rewriting increases tiveight of the cell variables nearly perfectly. Such a nearly perfect integration
state vectoronly by one except in the following two casesalso occurs to all the codes presented in this paper.

(1) The rewriting makes:, or 4 become zero, in which case
the weight of the cell state vectman be increased by at most

3; (2) The rewriting causes the cells to stop using the current

pair of states — say anda + 1 — and start using the next pa|r
of statesa + 1 anda + 2, in which case thaveight of the cell
state vectoris increased by at most 7. The first case can bg
shown to occur no more thafy — 1) log, n times, while the
second case happens at mgst 1 times. That leads to the f2]

final conclusion. For the detailed proof, please see [7].m
(3]

(4]
A general upper bound towas shown in Theorem 2. It was
also shown that whek = 2,/ = 2, the bound is exact. For (g
large k or [, the following theorem can give a better bound.
Theorem 6:Let w be the smallest positive integer such tha[g]
(“+") > 1%, Then,t < [{=Dn g,
Let w’ be the smallest positive integer such tf&t™") >
I¥. Then, whenk > 2, ¢ < [{=Dn]
Proof: First, consider the general calse> 1. DefineS as
S = {(a1,az2, -, a,)] Z?:l a; < w,ay,as, - ,a, are non-
negative integerls and letw be the smallest integer such that9]
|S| > I*. DefineS’ asS’ = {(dy,dz, -, dn)| >y di < w+
n,dy,ds,- -, d, are positive integes By lettingd; = a;, +1
fori=1,2,--
betweenS andS’. So|S| =

V. BOUNDS FORFLOATING CODES

[71

(8]

|S’|. An element(d,, da, - - -, d,)

[10] R. L. Rivest and A. Shamir,

ACKNOWLEDGMENT

This work was supported in part by the Lee Center for Ad-
anced Networking at the California Institute of Technology.

REFERENCES

P. Cappelletti, C. Golla, P. Olivo and E. Zano#d(), Flash memories
Kluwer Academic Publishers, 1st Edition, 1999.

G. D. Cohen, P. Godlewski and F. Merkx, “ Linear binary code for write-
once memories,IEEE Trans. Inform. Theoryvol. IT-32, pp. 697-700,
Sept. 1986.

A. Fiat and A. Shamir, “Generalized ‘write-once’ memorid&§EE Trans.
Inform. Theory vol. IT-30, pp. 470-480, May 1984.

F. Fu and A. J. Han Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,”IEEE Trans. Inform. Theoryol. 45, no. 1, pp. 308-313, 1999.

S. Gregori, A. Cabrini, O. Khouri and G. Torelli, “On-chip error correct-
ing techniques for new-generation flash memori€gceedings of The
IEEE, vol. 91, no. 4, April 2003.

C. Heegard, “On the capacity of permanent memdBEE Trans. Inform.
Theory vol. IT-31, pp. 34-42, Jan. 1985.

A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint informa-
tion storage in write asymmetric memories,” electronic technical report,
http:/ /faculty.cs.tamu.edu/ajiang/Floatingcodes.pdf, 2007.

A. V. Kuznetsov and A. J. H. Vinck, “On the general defective channel
with informed encoder and capacities of some constrained memories,”
IEEE Trans. Inform. Theorwol. 40, no. 6, pp. 1866-1871, Nov. 1994.

F. Merkx, “WOMcodes constructed with projective geometriésdite-
ment du Signalvol. 1, no. 2-2, pp. 227-231, 1984.

“How to reuse a ‘write-once’ memory,”
Information and Contrglvol. 55, pp. 1-19, 1982.

,n, we see that there is a one-to-one mappingi] J. K. Wolf, A. D. Wyner, J. Ziv and J. Korner, “Coding for a write-once

memory,”AT&T Bell Labs. Tech. Jvol. 63, no. 6, pp. 1089-1112, 1984.

