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Abstract— Memories whose storage cells transit irreversibly
between states have been common since the start of the data
storage technology. In recent years, flash memories and other
non-volatile memories based on floating-gate cells have become a
very important family of such memories. We model them by the
Write Asymmetric Memory (WAM), a memory where each cell
is in one of q states – state 0, 1,· · ·, q− 1 – and can only transit
from a lower state to a higher state. Data stored in a WAM
can be rewritten by shifting the cells to higher states. Since the
state transition is irreversible, the number of times of rewriting
is limited. When multiple variables are stored in a WAM, we
study codes, which we callfloating codes, that maximize the total
number of times the variables can be written and rewritten.

In this paper, we present several families of floating codes
that either are optimal, or approach optimality as the codes get
longer. We also present bounds to the performance of general
floating codes. The results show that floating codes can integrate
the rewriting capabilities of different variables to a surprisingly
high degree.

I. I NTRODUCTION

Memories whose storage cells transit irreversibly between
states have been common since the beginning of the data
storage technology. Examples include punch cards and digital
optical discs, where a cell can change from a 0-state to a 1-
state but notvice versa. In recent years, flash memories and
some other non-volatile memories based on floating-gate cells
have become a very important family of such memories. They
have good properties including high data density, fast reading
time, physical robustness, etc., and have been widely used in
mobile, mass as well as standard storage devices.

We use flash memories as a typical example to explain
the basic storage mechanisms based on floating-gate cells.
A flash memory consists of floating-gate cells as its basic
storage elements. In most products, a cell has two states;
but to increase data density, multi-level storage (where a cell
has 4 to 256 or even more states) is being developed. For a
cell with q states, we denote its states by0, 1, · · · , q − 1. To
write (program) a cell, the hot-electron injection mechanism
or the Fowler-Nordheim tunneling mechanism is used to inject
electrons into the cell, where the electrons become trapped.
The number of trapped electrons in a cell determines the
threshold voltage of the cell: the more electrons, the higher the
threshold voltage. The number of trapped electrons is chosen
to concentrate aroundq discrete levels, corresponding to the

q cell states. The state of a cell can be read by measuring
the threshold voltage. Programming and reading cells are fast;
however, rewriting data is much more complex. Most of the
time, it requires moving cells to lower states for rewriting
data, which means to remove electrons from the cells. In flash
memories, cells are organized into blocks. A typical block
using binary cells stores 64, 128 or 256 kilobytes of data. Due
to circuit complexity reasons, to rewrite, first the whole block
has to be erased (which means to lower all the cells of the
block to the 0-state), then all the cells are reprogrammed. This
happens even if only one cell really needs to lower its state for
the rewriting, and it leads to a writing speed about105 times
slower than reading. Therefore, it will be very beneficial to
design codes for storing data such that the data can be rewritten
many times before the block has to be erased. Reducing the
number of block erasing operations is critical not only for
reducing the average rewriting time, but also for the flash
memory’s lifetime. Every erasing reduces the quality of cells,
and currently, a flash memory’s lifetime is bounded by about
105 program-erase cycles. Although technically speaking, a
cell can return to a lower state through block erasing, in this
paper, we are interested in the writing and rewriting of data
between two block erasing operations. In that period, the cells
can only go from lower states to higher states.

We model the memories mentioned above using the fol-
lowing Write Asymmetric Memory (WAM) model. A WAM
consists of n cells, where each cell hasq states: state
0, 1, · · · , q − 1. Such a cell is called aq-ary cell. A cell can
go from statei to statej if and only if i < j.

WAM is a straightforward generalization of the Write
Once Memory (WOM) model, firstly proposed by Rivest and
Shamir [10], whereq = 2. WAM is also a special case of
the Generalized WOM model [3], where the state transition
diagram of a cell can be any directed acyclic graph.

Historically, there has been research on WOM codes, where
a single variable is stored in a WOM, and the code enables it to
be rewritten multiple times [10]. In practice, a memory stores
many – let’s sayk – variables. If we want to apply the codes
to a memory, a simple approach is to partition the memory
into k parts, where each part stores a variable independently.

This simple approach, however, has a serious limitation. If
the rewriting frequencies are very nonuniform for the variables



– common in many applications – the WAM becomes unusable
very soon. For example, say that each storage part allowst
times of rewriting of a variable. Once one of thek variables
needs rewriting for the(t+1)-th time, the WAM can no longer
meet the requirement, even if the otherk − 1 variables have
not been rewritten yet. Therefore, it will be very beneficial
to integrate the rewriting capabilities of the variables, so that
the variables can be rewritten many times regardless of what
the rewriting sequence is. As we will show in this paper, such
an integration is feasible, many times to a surprisingly high
degree. We call the codes that achieve it theFloating Codes.

We formally define the problem we study as follows.k
variables are stored in a WAM, where each variable takes its
value from an alphabet of sizel: {0, 1, · · · , l− 1}. The WAM
hasn q-ary cells. Initially, all the cells are in the 0-state, and all
the variables have the default value 0. Each rewriting updates
the value of one variable. We use(v1, v2, · · · , vk) – called
the variable vector– to denote the values of thek variables,
wherevi ∈ {0, 1, · · · , l− 1}. We use(c1, c2, · · · , cn) – called
thecell state vector– to denote the states of then cells, where
ci ∈ {0, 1, · · · , q − 1}. A cell state vector(c1, c2, · · · , cn) is
said to beaboveanother cell state vector(c′1, c

′
2, · · · , c′n) if

ci ≥ c′i for all i. When the cells change their states, they can
only change to a state vector above the current one.

A floating codehas two functions,α : {0, 1, · · · , q−1}n →
{0, 1, · · · , l−1}k, andβ : {0, 1, · · · , q−1}n×{1, 2, · · · , k}×
{0, 1, · · · , l− 1} → {0, 1, · · · , q− 1}n. Functionα maps each
cell state vector to a variable vector, which is used to decode
(interpret) the stored data. Functionβ shows how to rewrite:
given the current cell state vector and the information on which
of the k variables is to be updated to which new value, the
functionβ outputs the new cell state vector. The new cell state
vector should correspond to the new values of the variables.

A floating code allowingt times of rewritingis a code that
allows the variables to be rewritten at leastt times in total,
regardless of what the sequence of rewriting is. A fundamental
objective of floating codes is to maximizet.

In the following, we first present a brief overview of the
related work. Then, we present the constructions of several
families of floating codes, which either are optimal, or ap-
proach optimality as the codes get longer. We also present
upper and lower bounds tot for general floating codes.

II. RELATED WORK

WOM codes were first studied by Rivest, Shamir [10]et
al., where a single variable is stored in a WOM and can
be updated multiple times. Capacities of WOMs have been
studied [3] [4] [6] [8] [10] [11], and multiple classes of codes
have been invented. The majority of those codes are binary,
and they include tabular codes [10], linear codes [2] [10],
codes constructed using Golay codes [2] or projective ge-
ometries [9], etc. Besides WOM, constrained memories also
include write efficient memory (WEM), write unidirectional
memory (WUM) and write isolated memory (WIM) [8].

There is no work we are aware of that addresses the use
of codes for flash memories for increasing the number of

(re)writes between two erasing operations, useful for improv-
ing writing speed and prolonging the memory lifetime. The
use of error-correcting codes for improving data reliability in
flash memories has been proposed in some works [1] [5].

III. A N OPTIMAL CODE FORTWO BINARY VARIABLES

In this section, we present a floating code for binary
variables. That is,l = 2, so each variable has value 0 or 1. In
flash memories, the 16 bits of a word are usually stored at the
same position of 16 parallel blocks. Consequently, a rewriting
operation on a word becomes the rewriting of a bit in a block.
Therefore, it is important to study the case ofl = 2.

The code we present is fork = 2, l = 2 and arbitraryn
and q. The code maximizest, the number of rewrites, and
is thus optimal. We prove the code’s optimality by providing
a general upper bound tot for floating codes, which is not
limited to the casek = 2, l = 2.

A. Optimal Floating Code fork = 2, l = 2 and Arbitraryn, q

Three examples of the code are shown in Fig. 1, correspond-
ing to n = 1, 2 and 3, respectively. We comment thatn = 1, 2
are, in fact, degenerated cases; it is only whenn = 3 or more
that the code reveals the full structure of its construction.

The numbers inside each circle are a cell state vector,
while the bold numbers beside the circle are the corresponding
variable vector. For example, in Fig. 1(a), the cell state vector
(c1) = (3) corresponds to the variable vector(v1, v2) = (0, 0);
in Fig. 1(c), the cell state vector(c1, c2, c3) = (1, 0, 0)
corresponds to the variable vector(v1, v2) = (1, 0). The
arrows leaving a cell state vector shows how the next rewriting
should be performed when this cell state vector is the current
cell state vector. For example, for the code in Fig. 1(c), if
the current cell state vector is(1, 0, 0) and the new rewriting
request is to change the first variable to ‘0’ (which means to
change the variable vector from(1, 0) to (0, 0)), then the cell
state vector will become(1, 1, 0). Similarly, if the sequence
of rewriting changes the variable vector as(0, 0) → (1, 0) →
(1, 1) → (0, 1) → · · · (note that every rewriting changes the
value of just one variable), the cell state vector changes as
(0, 0, 0) → (1, 0, 0) → (1, 0, 1) → (1, 0, 2) → · · ·

We define the cell state vectors of thei-th generationto
be the cell state vectors reachable afteri times of rewriting.
In Fig. 1, all the cell state vectors in the same generation are
placed at the same horizontal level. For example, in Fig. 1(c),
the cell state vectors in the 2nd generation are(1, 1, 0), (1, 0, 1)
and(0, 1, 1). The codes in Fig. 1 are all for arbitrarily largeq,
and they all have periodic patterns; specifically, every code is
a repetition of the structure shown in the dotted box labelled
by “one period.” To see how, notice that the first generation in
the dotted box contains two cell state vectors corresponding to
two different variable vectors, and so is true for the generation
of cell state vectors directly following the dotted box; what’s
more, the latter two cell state vectors can be obtained from the
former two cell state vectors by raising every cell’s state by
2. (For example, in Fig. 1(b), the former two cell state vectors
are (1, 0) and (0, 1); when we raise every cell’s state by 2,
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Fig. 1. Three examples of an optimal floating code fork = 2, l = 2 and
arbitraryn, q. (a) n = 1. (b) n = 2. (c) n = 3.

we get(3, 2) and(2, 3), the latter two cell state vectors.) The
code is built for arbitrarily largeq in the following way. A
“period” in the code contains2n− 1 generations. The second
period directly follows – and has the same structure as – the
first period, except that: (i) every cell’s state is raised by 2, (ii)
the pair of variable vectors(1, 0) and(0, 0) are switched, and
the pair of variable vectors(0, 1) and(1, 1) are also switched.
For i = 1, 2, 3, · · ·, the (2i + 1)-th (resp.,(2i + 2)-th) period
has the same structure as the 1st (resp. 2nd) period except that
every cell’s state is raised by4i.

If q is finite, it is simple to get the corresponding code: just
truncate the above code to the maximum generation, subject
to the constraint that every cell’s state is at mostq − 1.

We present the formal construction of the code in Fig. 2
to 3. The construction is in fact quite regular and elegant.

It is straightforward to verify the correctness (validity) of
the code in Fig. 2 to 3. The key step is to verify that for every
cell state vector, its two outgoing arrows enter two cell state
vectors in the next generation that correspond to two different
and correct variable vectors(v1, v2). It is also straightforward
to verify the correctness of the following theorem.

Theorem 1:For the code constructed in Fig. 2 and Fig. 3,
t = (n− 1)(q − 1) + b q−1

2 c.
We see that the floating code integrates the WAM’s rewriting

capabilities for different variable to a very high degree. Let’s
call

∑n
i=1 ci the weightof the cell state vector. Clearly, every

rewriting needs to increase thatweight by at least 1. If the
n cells are split into two and used independently by the
k = 2 variables,t can never exceedn2 · (q − 1). The floating
code, however, achievest ≈ (n − 0.5)(q − 1). The code
construction in Fig. 2 to 3 can be easily converted into very
efficient encoding (for rewriting) and decoding (for mapping
cell state vectors to variable vectors) algorithms. Due to the
space limitation, we skip the details.

Floating Code Construction: k = 2, l = 2 and arbitrary n, q

1. For i = 1, 2, · · · , n− 1, do:
The i-th generation of cell state vectors contains all thei + 1
elements that satisfy the following properties: (1) Among the first
i + 1 cells, i of them are in state 1 and one of them is in state 0;
(2) The lastn− (i + 1) cells are all in state 0.
In the i-th generation, if a cell state vector is
(1, 1, · · · , 1, 0, 0, · · · , 0) (that is, the first i cells are in
state 0, and the lastn− i cells are in state 0), then it corresponds
to the variable vector(v1, v2) = (1, 0) (if i is odd) or
(v1, v2) = (0, 0) (if i is even); otherwise, the cell state vector
corresponds to the variable vector(v1, v2) = (0, 1) (if i is odd)
or (v1, v2) = (1, 1) (if i is even).
Let a denote a cell state vector in the(i− 1)-th generation. The
two outgoing arrows ofa are as follows: one arrow goes to the
cell state vector in thei-th generation where the firsti cells are
in state 1 and the lastn − i cells are in state 0; the other arrow
goes to the cell state vector of thei-th generation that is the same
asa except that its(i + 1)-th cell is in state 1 instead of state 0.

2. Note that by the above construction, the(n − 1)-th generation
containsn cell state vectors, where each cell state vector hasn−1
cells in the state 1 and one cell in the state 0. Let’s denote those
n cell state vectors bys1, s2, · · · , sn. For si (1 ≤ i ≤ n), let’s
denote then−1 cells in state 1 bybπ(i,1), bπ(i,2), · · · , bπ(i,n−1),
and denote the cell in state 0 bybπ(i,n). (1 ≤ π(i, j) ≤ n.)

3. For i = n, n + 1, · · · , 2n− 3, do:
The i-th generation of cell state vectors containsn(i − n + 2)
elements, which we partition inton groups. Forj = 1, 2, · · · , n,
thej-th group contains all thei−n+2 = [i−(n−1)]+1 elements
that satisfy the following properties: among the[i− (n− 1)] + 1
cells bπ(j,1), bπ(j,2), · · · , bπ(j,i−(n−1)+1), i− (n− 1) of them
are in state 2 and one of them is in state 1; the2n − i − 3
cells bπ(j,i−(n−1)+2), bπ(j,i−(n−1)+3), · · · , bπ(j,n−1) are all
in state 1; the cellbπ(j,n) is in state 0.
In the i-th generation, for a cell state vector in thej-th group,
if the cellsbπ(j,1), bπ(j,2), · · · , bπ(j,i−(n−1)) are all in state 2,
then it corresponds to the variable vector(v1, v2) = (1, 0) (if i
is odd) or(v1, v2) = (0, 0) (if i is even); otherwise, the cell state
vector corresponds to the variable vector(v1, v2) = (0, 1) (if i
is odd) or(v1, v2) = (1, 1) (if i is even).
Let a denote a cell state vector in the(i − 1)-th generation and
in the j-th group. (If i− 1 = n− 1, then leta be sj .) The two
outgoing arrows ofa are as follows: one arrow goes to the cell
state vector in thei-th generation and thej-th group where the
i − (n − 1) cells bπ(j,1), bπ(j,2), · · · , bπ(j,i−(n−1)) are all in
state 2; the other arrow goes to the cell state vector in thei-th
generation and thej-th group that is the same asa except that its
cell bπ(j,i−(n−1)+1) is in state 2 instead of state 1.

4. Note that by the above construction, the(2n − 3)-th generation
containsn(n− 1) cell state vectors, where each vector hasn− 2
cells in state 2, one cell in state 1, and one cell in state 0.

5. The (2n − 2)-th generation of cell state vectors containsn +(
n
2

)
elements, which we partition into two groups. The first group

contains all then vectors wheren−1 cells are in state 2 and one
cell is in state 0. The second group contains all the

(
n
2

)
vectors

wheren− 2 cells are in state 2 and two cells are in state 1. All
the cell state vectors in the first (resp., second) group correspond
to the variable vector(v1, v2) = (0, 0) (resp.,(1, 1)).
The (2n − 1)-th generation of cell state vectors containsn +
1 elements, which we partition into two groups. The first group
contains all then cell state vectors wheren−1 cells are in state 2
and one cell is in state 1; the second group contains one cell state
vector where all then cells are in state 2. The cell state vectors
in the first (resp. second) group correspond to the variable vector
(v1, v2) = (1, 0) (resp.(0, 1)).
Let a denote a cell state vector in the(2n− 3)-th (resp.,(2n−
2)-th) generation. The two outgoing arrows ofa enter two cell
state vectors of the(2n − 2)-th (resp.,(2n − 1)-th) generation,
respectively in the first group and in the second group, both of
which areabovea. (To be continued in Fig. 3.)

Fig. 2.



Floating Code Construction: Continuation of Fig. 2

6. The above2n − 1 generations of cell state vectors form the first
period of the code. Repeat the period’s structure to get the 2nd, 3rd,· · ·
periods (as described before in this paper). Just remember that for the
i-th period, ifi is even, then switch the variable vector(0, 0) with (1, 0),
and switch the variable vector(1, 1) with (0, 1). If q is finite, truncate
the code to the maximum generation subject to the constraint that all the
cells’ states are at mostq − 1.

Fig. 3.

B. A General and Tight Upper Bound tot

We now present a general upper bound tot, which holds
for any k, l, n and q. The bound can show that the code in
Fig. 2 and Fig. 3 is optimal.

Theorem 2:For any floating code, ifn ≥ k(l − 1) − 1,
then t ≤ [n − k(l − 1) + 1] · (q − 1) + b [k(l−1)−1]·(q−1)

2 c; if
n < k(l − 1)− 1, thent ≤ bn(q−1)

2 c.
Proof: Due to the space limitation, we present only the

sketch of the proof here. Please refer to [7] for the details. The
idea is to show that for any floating code, whenn ≥ k(l−1)−
1, there is a sequence of at most[n− k(l− 1) + 1] · (q− 1) +
b [k(l−1)−1]·(q−1)

2 c rewriting operations after which no more
rewriting can be performed. The casen < k(l−1)−1 can be
analyzed similarly. We find such a “bad” sequence of rewriting
operations using the following method. Fori = 0, 1, 2 · · ·,
after thei-th rewriting operation, we use a setSi to remember
the k(l − 1) − 1 cells whose states are the lowest. Thei-th
rewriting operation is selected in this way: if all the choices
for the rewriting increases theweight of the cell state vector
by only one, we select thei-th rewriting operation to be the
one that raises the state of a cell outsideSi−1; otherwise, we
select thei-th rewriting operation to be the one that increases
the weight of the cell state vectorby at least two.

Let a1, a2, · · · , an denote then cells, and letci
j denote the

state of thej-th cell after thei-th rewriting operation. (0 ≤
ci
j ≤ q − 1.) Let Pi =

∑
aj∈Si

(q − 1 − ci
j), and letQi =∑

aj /∈Si
(q − 1 − ci

j). Let t0 denote the number of rewriting
operations in our rewriting sequence. With a careful inductive
analysis, we show that for alli, t0 − i ≤ Qi + bPi

2 c. By
replacingi with 0, we obtain the final conclusion.

By plugging k = 2 and l = 2 into Theorem 2, and
comparing it with Theorem 1, we get the following conclusion.

Theorem 3:The floating code presented in Fig. 2 and Fig. 3
is optimal, namely, it maximizes the number of rewritest.

The above observation also shows that in some cases, the
upper bound presented in Theorem 2 is tight.

IV. N EARLY OPTIMAL L INEAR CODES

In this section, we present two linear codes of similar
structures for binary variables. Both codes havelimn→∞ t =
(q − 1)n + o(n). Since all floating codes havet ≤ (q − 1)n,
the two codes approach optimality asn →∞.

In both codes, every cell essentially corresponds to an
integer, and a linear combination of those integers form the
numerical representation of thek variables. We borrow the
idea from the WOM codes proposed by Fiat and Shamir in [3].

Those WOM codes are for updating a single variable in a
binary WOM. The floating codes we present are, respectively,
for rewriting two or three variables inq-ary WAMs.

We define a functionodd(x) as follows: for any non-
negative integerx, if x is odd, odd(x) = 1; otherwise,
odd(x) = 0. Let (ax1

1 ax2
2 · · · axh

h ) denote a string that consists
of x1 consecutivea1’s, followed by x2 consecutivea2’s, · · ·,
ended withxh consecutiveah’s. For example,(12011103) is
(1, 1, 0, 1, 0, 0, 0).

Below are the constructions of the two floating codes.

• Code Construction I:k = 2, l = 2, n ≥ 3, arbitrary q
In this code, a valid cell state vector(c1, c2, · · · , cn)
always satisfies the following two constraints: (1)∀ i, j,
|ci − cj | ≤ 1; (2) (c1, c2, · · · , cn) = ((a + 1)x1ax2(a +
1)x3) for somea, x1, x2, x3 where0 ≤ a < q − 1, x1 +
x2 + x3 = n, x2 ≥ 1. (For example, whenn = 5, q = 3,
(1, 1, 1, 0, 1) = (130111) and (1, 1, 1, 1, 2) = (201421)
are both valid cell state vectors.)
A cell state vector((a + 1)x1ax2(a + 1)x3) corresponds
to the variable vector(v1, v2) in the following way:v1 =
odd(x1), v2 = odd(x3).
The rewriting operation is as follows. When the rewriting
changes the value of variablev1 (resp.,v2), we usually
increasex1 (resp.,x3) by 1 and decreasex2 by 1. The
exception happens whenx2 = 1; in that case, we first
raise all the cells to the statea + 1 (which makesx1 =
x3 = 0 and x2 = n), then increasex1 or x3 (or both)
based on necessity.
For example, assume thatn = 4, q = 3 and the rewriting
operations change the variable vector(v1, v2) as follows:
(0, 0) → (0, 1) → (0, 0) → (1, 0) → (1, 1). Then,
the cell state vector changes as follows:(0, 0, 0, 0) →
(0, 0, 0, 1) → (0, 0, 1, 1) → (1, 0, 1, 1) → (2, 1, 1, 2).

Theorem 4:When n is odd, the floating code in Code
Construction I hast = (n − 1)(q − 1); if n is even, it has
t = (n− 2)(q − 1) + 1.

We skip the proof for theorem 4 due to the space limitation.
Interested readers please see [7]. By theorems 2 and 4, we see
that whenq = 2, the above code is strictly optimal.

• Code Construction II:k = 3, l = 2, n ≥ 5, arbitrary q
In this code, a valid cell state vector(c1, c2, · · · , cn)
always satisfies the following two constraints: (1)∀ i, j,
|ci−cj | ≤ 1; (2) the cell state vector is either in the form
((a + 1)x1ax2(a + 1)x3ax4(a + 1)x5), where

∑5
i=1 xi =

n, x2 ≥ 1, x4 ≥ 1 (which we callform I), or in the form
((a+1)x1ax2(a+1)x5), wherex1 +x2 +x5 = n, x2 ≥ 1
(which we callform II).
A cell state vector corresponds to the variable vector
(v1, v2, v3) in the following way: if the cell state vector
is in form I, then v1 = odd(x1), v2 = odd(x3),
v3 = odd(x5); if the cell state vector is inform II, then
v1 = odd(x1), v2 = 0, v3 = odd(x5).
The rewriting operation is as follows. When the rewriting
changes the value of variablev1 (resp.,v3), we usually
increasex1 (resp.,x5) by 1 and decreasex2 (resp.,x4 or



x2, depending on if the cell state vector is inform I or
form II) by 1. When the rewriting changes the value of
variablev2, we either increasex3 by 1 and decreasex2 or
x4 by 1 (when the cell state vector is inform I), or change
the cell in the middle of the sequence ofa’s from statea
to statea+1 (when the cell state vector is inform II). If x2

or x4 becomes zero due to the above operation, the cell
state vector is reevaluated, and the operation described
above is carried out again based on the values of the
variables. If the above operation cannot be carried out
any more when the cells remain in the current two states
– statea and statea + 1 – then we start to use the two
statesa + 1 anda + 2, in the same way as we have used
the two statesa anda + 1 above.
The following examples show how the code works.
Assume thatn = 10, q = 3. (1) If the cell state vector
is (110910), then (v1, v2, v3) = (1, 0, 0); if the next two
rewriting operations change(v1, v2, v3) to (0, 0, 0) and
then to(0, 1, 0), the cell state vector changes to(120810),
and then to(1203110410). (2) If the cell state vector is
(1301110411), then (v1, v2, v3) = (1, 1, 1); if the next
two rewriting operations change(v1, v2, v3) to (0, 1, 1)
and then to(0, 1, 0), the cell state vector changes to
(1601110111), and then to(2014211520).

Theorem 5:The floating code in Code Construction II has
t ≥ (n− 6− 2 log2 n)(q − 1) + 2.

Proof: We present the sketch of the proof here because
of the space limitation. Please see [7] for details. The main
idea is that every rewriting increases theweight of the cell
state vectoronly by one except in the following two cases:
(1) The rewriting makesx2 or x4 become zero, in which case
the weight of the cell state vectorcan be increased by at most
3; (2) The rewriting causes the cells to stop using the current
pair of states – saya anda+1 – and start using the next pair
of statesa + 1 anda + 2, in which case theweight of the cell
state vectoris increased by at most 7. The first case can be
shown to occur no more than(q − 1) log2 n times, while the
second case happens at mostq − 1 times. That leads to the
final conclusion. For the detailed proof, please see [7].

V. BOUNDS FORFLOATING CODES

A general upper bound tot was shown in Theorem 2. It was
also shown that whenk = 2, l = 2, the bound is exact. For
largek or l, the following theorem can give a better bound.

Theorem 6:Let w be the smallest positive integer such that(
w+n

n

) ≥ lk. Then,t ≤ d (q−1)n
w ek.

Let w′ be the smallest positive integer such that
(
w′+n

n

)
>

lk. Then, whenk ≥ 2, t ≤ d (q−1)n
w′ ek.

Proof: First, consider the general casek ≥ 1. DefineS as
S = {(a1, a2, · · · , an)|∑n

i=1 ai ≤ w, a1, a2, · · · , an are non-
negative integers}, and letw be the smallest integer such that
|S| ≥ lk. DefineS′ asS′ = {(d1, d2, · · · , dn)|∑n

i=1 di ≤ w+
n, d1, d2, · · · , dn are positive integers}. By letting di = ai +1
for i = 1, 2, · · · , n, we see that there is a one-to-one mapping
betweenS andS′. So |S| = |S′|. An element(d1, d2, · · · , dn)

belongs toS′ if and only if it is a solution to the following
problem: partition a path ofw + n vertices inton or more
sub-paths such that fori = 1, 2, · · · , n, the i-th sub-path has
di > 0 vertices. Therefore,|S′| =

(
w+n

n

)
. So w is also the

smallest positive integer such that
(
w+n

n

) ≥ lk.
k consecutive rewriting operations can make the variables

change to or go through any of thelk possible values. If we
seeai (for i = 1, 2, · · · , n) as the increase inci – the state of
the i-th cell – and consider the wayS andw are defined, we
see that whatever the current cell state vector is, there existk
consecutive rewriting operations that increases theweight of
the cell state vector

∑n
i=1 ci by at leastw. Now consider the

first batch of suchk rewriting operations, the second batch,
and so on. Since the maximum weight of the cell state vector
is (q − 1)n, we gett ≤ d (q−1)n

w ek.
The proof for the slightly more restrictive casek ≥ 2 is

very similar. Please see [7] for its details.
Whenk or l is sufficiently large, theorem 6 gives an upper

bound to t that is roughly (q−1)nk

(n!)
1
n l

k
n

. Now we present an

elementary lower bound as well as an exact evaluation for
t. Due to the space limitation, we skip their proofs. Please
refer to [7] for the detailed proofs.

Theorem 7:There exist floating codes wheret ≥ bn
k c ·

b q−2
l−1 c.
Theorem 8:Whenk, l, q are fixed andn →∞, there exist

floating codes wheret = (q − 1)n + o(n).
Theorem 8 shows that whenn → ∞, floating codes

can integrate the WAM’s rewriting capabilities for different
variables nearly perfectly. Such a nearly perfect integration
also occurs to all the codes presented in this paper.
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