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Constrained Codes as Networks of Relations
Moshe Schwartz,Member, IEEE,and Jehoshua Bruck,Fellow, IEEE

Abstract— We address the well-known problem of determining
the capacity of constrained coding systems. While the one-
dimensional case is well understood to the extent that there
are techniques for rigorously deriving the exact capacity, in
contrast, computing the exact capacity of a two-dimensional
constrained coding system is still an elusive research challenge.
The only known exception in the two-dimensional case is an exact
(however, not rigorous) solution to the(1, ∞)-RLL system on the
hexagonal lattice. Furthermore, only exponential-time algorithms
are known for the related problem of counting the exact number
of constrained two-dimensional information arrays.

We present the first known rigorous technique that yields an
exact capacity of a two-dimensional constrained coding system.
In addition, we devise an efficient (polynomial time) algorithm
for counting the exact number of constrained arrays of any
given size. Our approach is a composition of a number of ideas
and techniques: describing the capacity problem as a solution
to a counting problem in networks of relations, graph-theoretic
tools originally developed in the field of statistical mechanics,
techniques for efficiently simulating quantum circuits, as well
as ideas from the theory related to the spectral distribution of
Toeplitz matrices.

Using our technique we derive a closed form solution to
the capacity related to the Path-Cover constraint in a two-
dimensional triangular array (the resulting calculated capacity is
0.72399217 . . . ). Path-Cover is a generalization of the well known
one-dimensional(0, 1)-RLL constraint for which the capacity is
known to be 0.69424 . . .

Index Terms— capacity of constrained systems, capacity of
two-dimensional constrained systems, holographic reductions,
networks of relations, FKT method, spectral distribution of
Toeplitz matrices

I. I NTRODUCTION

W HILE most storage devices record information on
a two-dimensional surface, they emulate a one-

dimensional environment by spacing tracks or recorded data.
The distance between adjacent tracks in common devices is an
order of magnitude larger than the distance between adjacent
symbols along the track. The next big leap in storage density
may be achieved by reducing the distance between tracks. This
in turn, requires a two-dimensional constrained-coding scheme
to be employed.

A two-dimensional constrained systemSn,m is simply a set
of n × m arrays over some specified alphabet. The common
example of such a system is the(d, k)-RLL constraint in which
each row and each column of the array has runs of zeroes
whose length is at leastd and at mostk. Other two-dimensional
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constraints forbid certain patterns in the arrays, such as the no-
isolated-bit constraint in which every bit agrees with at least
one of its four neighbors in the two-dimensional array.

An important measure associated with a constrained system
is its capacity. Introduced by Shannon [30], the capacity of a
constrained systemS is defined as

cap(S)
def
= lim

n,m→∞

log2 |Sn,m|
nm

.

While the capacity of one-dimensional constraints is well
understood, amazingly, there is still very little known about
the capacity of two-dimensional systems.

In the case of two-dimensional(d, k)-RLL systems, Ito et
al. [16] characterized the values ofd and k for which the
capacity is zero. General bounds on the capacity of(d, k)-RLL
were given by Kato and Zeger [19], constructive lower bounds
for (d, ∞)-RLL by Halevy et al. [15], and non-constructive
asymptotically-tight bounds for(0, k)-RLL by Schwartz and
Vardy [29]. For the specific case of(1, ∞)-RLL, Calkin and
Wilf [6] gave a numerical estimation method for the capacity
using the transfer matrix method. Only for the(1, ∞)-RLL
constraint on the hexagonal lattice, Baxter [3] gave an exact
but not rigorous1 analytical solution for the capacity using the
corner transfer matrix method.

Other two-dimensional constraints do not fare any better.
Several estimates for the capacity of the two-dimensional no-
isolated-bit constraint exist. Halevy et al. [15] considered bit
stuffing encoders to constructively estimate this capacity. Non-
constructively, Forchhammer and Laursen [12], estimated this
capacity using random fields.

The method we present in this work is general enough
to encompass a wide variety of constraints (both local and
global), however, its expressive power is yet undetermined. We
use onlymathematically-rigoroustools to obtain exact capac-
ity solutions and polynomial-time algorithms, while pointing
out places where non-rigorous practices were common. The
method is based on a series of reductions:

1) A constrained system is first reduced to a network of
relations in a way which enables us to connect the
number of satisfying assignments to the network with
the number of constrained arrays. Though this is usually
done in a one-to-one manner, it is not mandated.

2) This network of relations is transformed to a weighted
graph using holographic reductions in such a way that
the number of satisfying assignments to the network
equals the weighted perfect matching of the graph. This
is a many-to-many reduction in which the individual
perfect matchings do not correspond in any one-to-one

1As Baxter notes in [4] page 409: “It is not mathematically rigorous, in
that certain analyticity properties . . . are assumed, and the results . . . (which
depend on assuming that various large-lattice limits can be interchanged) are
used. However, I believe that these assumptions . . . are in fact correct.”



2

way to satisfying assignments, and the “interference”
and cancellations between different matchings is the
reason for the nameholographicreductions.

3) Finally, the weighted perfect matching of the graph is
expressed as a Pfaffian (or a linear combination of Pfaf-
fians) of a certain skew-symmetric matrix, completing
the series of reductions. Using the theory of spectral
distribution of Toeplitz matrices, a limit involving the
Pfaffian gives a closed form solution for the capacity.
The Pfaffian itself also provides a polynomial-time al-
gorithm for counting the exact number of constrained
arrays of any given size.

The paper is written with the goal of explaining our new
method in a self-contained manner. We start by providing
the background needed for the three key steps in Section II,
starting with networks of relations, going through holographic
reductions, and ending with the Fisher-Kasteleyn-Temperley
(FKT) method. In Section III we apply this background
to an example constrained coding system and demonstrate
how to derive its exact capacity using the theory of spectral
distribution of Toeplitz matrices. We continue in Section IV
by presenting a polynomial-time algorithm for counting the
number of constrained arrays while taking the opportunity
to introduce two generalizations to the method involving
constraints on a torus and generalized relations. We conclude
in Section V with a summary of the results and a list of open
questions.

II. BACKGROUND AND DESCRIPTION OF THENEW

TECHNIQUE

The background we are about to provide is described in a
relatively self-contained manner, and is therefore quite lengthy.
It is divided into three sub-sections, for which the following
tiny example is an appetizer and also serves as a table of
contents.

Suppose we are given a graph whose edges may be assigned
either a0 or a 1. Only not any assignment is possible: every
vertex implements a local constraints on the values assigned
to edges incident to it. Such graphs are callednetworks of
relationsand are described in Section II-A. In Figure 1 we see
a simple network whose three outer vertices are satisfied with
any assignment to their single incident edge, while the middle
vertex forbids all three incident edges to be assigned the same
value. Obviously, the number ofsatisfying assignmentsin this
example is6.

Counting the number of satisfying assignments seems to be
difficult when stated this way. But we can reduce this problem
to a problem of finding the weighted perfect matching of
some other graph. This is done usingholographic reductions
which are described in Section II-B. For this tiny example, the
resulting weighted graph is shown in Figure 2. The weighted
perfect matching of the graph, which is the sum over all
perfect matchings of the product of the weights of edges in the
perfect matching, is indeed6, as is the number of satisfying
assignments to the original network of relations.

Finally, the weighted perfect matching of the graph is cal-
culated using theFisher-Kasteleyn-Temperley (FKT) method,

R 6=

φ+φ+

φ+

Figure 1. A simple network of relations
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Figure 2. The weighted graph corresponding to the network of relations
from Figure 1

which is described in Section II-C. Loosely speaking, the
adjacency matrix of the graph is modified by changing the
signs of the entries to make it skew-symmetric:

A =





























0 −1 1 − 1
4 0 −1 0 0 0 0

1 0 −1 − 1
4 0 0 0 −1 0 0

−1 1 0 − 1
4 0 0 0 0 0 −1

1
4

1
4

1
4 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0

1 0 0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0

0 1 0 0 0 0 −2 0 0 0

0 0 0 0 0 0 0 0 0 2

0 0 1 0 0 0 0 0 −2 0





























The weighted perfect matching is then the Pfaffian of the
modified matrix, which is (up to a sign) the square root of
the determinant of the matrix. As if by magic, we again get

|Pf(A)| =
√

det(A) = 6.

A. Networks of Relations

We start our journey by introducing networks of relations.
Those were used in the context of relational databases and
constraint-satisfaction problems, see for example [14], [8],
[9]. For more on the subject the reader is referred to [7] and
references therein.

Given some ground setΩ, a relation on n variables is
a subsetR ⊂ Ωn. As will be apparent later on, by abuse
of notation we will also consider a relation to be a function
R : Ωn → {0, 1} which is simply the characteristic function
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associated with the subsetR. We also define thesignatureof
the relation to be the column vector

sig(R)
def
=























R(0, . . . , 0, 0)
R(0, . . . , 0, 1)
R(0, . . . , 1, 0)
R(0, . . . , 1, 1)

...
R(1, . . . , 1, 0)
R(1, . . . , 1, 1)























.

A network of relationsis a graphG = (V, E) where we
associate with each vertexv∈V a relation Rv on deg(v)
variables being the ordered set of incident edges onv. We
can now assign every edgee∈ E a value fromΩ and check
whether all the relations are satisfied. For every such assign-
ment of values to edgesA : E → Ω, every vertexv∈V, and
edges incident onv denotede1, . . . , edeg(v), we defineAv to
be

Av
def
=
(

A(e1), . . . , A(edeg(v))
)

.

We say that assignmentA is a satisfying assignmentif for
every v∈V, the relationRv is satisfied, i.e.,Av ∈ Rv. If we
denoteE = (e1, . . . , e|E|), we will usually specifyA by the
vector of assignments toe1 throughe|E|. Throughout the paper
we will be interested in counting the number of satisfying
assignments to networks of relations.

Example 1. Let us take as a running example the network of
relations shown in Figure3. We use the ground setΩ = {0, 1},
defineR 6= to be thenot-all-equal relationon three variables,
andφ+ to be theaccept-allrelation on one variable:

x1 x2 x3 R 6=
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

x1 φ+

0 1
1 1

We can easily see that there are exactly18 distinct satisfying
assignments to this network which we list below:

A∈ {(0, 0, 1, 0, 0), (0, 0, 1, 0, 1), (0, 0, 1, 1, 0),

(0, 1, 0, 0, 1), (0, 1, 0, 1, 0), (0, 1, 0, 1, 1),

(0, 1, 1, 0, 0), (0, 1, 1, 0, 1), (0, 1, 1, 1, 0),

(1, 0, 0, 0, 1), (1, 0, 0, 1, 0), (1, 0, 0, 1, 1),

(1, 0, 1, 0, 0), (1, 0, 1, 0, 1), (1, 0, 1, 1, 0),

(1, 1, 0, 0, 1), (1, 1, 0, 1, 0), (1, 1, 0, 1, 1)}.

If we wanted to be completely accurate, we should have
included a numbering of the incident edges to each vertex of
Figure 3. However, since all the relations in this example are
symmetric, this is unnecessary. 2

R 6=

R 6=

φ+

φ+

φ+

φ+

e1

e2

e3

e4

e5

Figure 3. The network of relations of Example 1

B. Holographic Reductions

Holographic reductions were introduced by Valiant in [36]
and [37] to show certain counting problems may be solved
in polynomial time. In a slightly different version they were
introduced also by Valiant [35] to simulate quantum circuits
efficiently in polynomial time. Though the notion of networks
of relations does not appear as such in his work, Valiant shows
a many-to-many reduction from such networks to weighted
graphs. This reduction preserves the total number of solutions,
i.e., the number of satisfying assignments to the original
network of relations equals the weighted perfect matching
of the resulting graph. The reduction itself is realized by
replacing each of the vertices of the original network with a
small gadget. In what follows we will describe this reduction
in practical terms. For a rigorous treatment of the method the
reader is encouraged to read [36].

Let G = (V, E) be a graph. Aperfect matchingis a subset
of edgesM ⊆ E such that every vertexv∈V is incident to
exactly one of the edges inM. The set of all perfect matchings
will be denotedPM(G). We can now assign complex weights2

to the edgesw : E → C, and define theweighted perfect
matchingof G to be

PerfMatch(G)
def
= ∑

M ∈ PM(G)
∏

e∈ M

w(e).

Our aim is to replace vertices in the network of relations,
with gadgets which somehow capture the original relations.
The gadgets are calledmatchgatesand the resulting graph is
called amatchgrid. At this point, just like in [36], we require
the graphG to be planar as well as all the matchgates we
use, resulting in a planar matchgrid graph. This is perhaps
the most restrictive requirement we face during the process.
We are, however, able to use non-planar graphs, though at a
cost of increased computational complexity. Such a non-planar
matchgrid will be introduced in Section IV. For now, however,
we assume all graphs are planar.

2Throughout the paper we use complex weights, though the method applies
equally well to other fields.



4

A matchgate is defined as a graphG = (V, E, X, Y) with
vertex setV, edge setE, a set of input nodesX ⊆ V, and a set
of output nodesY ⊆ V, whereX andY are disjoint and|X|+
|Y| equals the number of variables in the original relation.
For convenience, we can think ofX and Y as drawn on the
outer face of the graph. The edges in the network of relations
are copied to the matchgrid with weight1, and are placed so
as to connect input vertices of gadgets with output vertices
of gadgets such that every input/output vertex is incident to
exactly one of those edges.

The interaction of the matchgate with the outside world,
i.e., the matchgrid, which should encapsulate the original
relation, is given by a2|X| × 2|Y| matrix, called thesignature
of the matchgate, in the following manner: for each possible
Z ⊆ X ∪Y there is an entry containingPerfMatch(G − Z).
This is meant to simulate all possible ways of a global perfect
matching interacting with the matchgate, where the subsetZ
depends on whether edges between matchgates are chosen to
be part of the global perfect matching. Such chosen edges
already cover some of the interfacing input/output vertices
of the matchgate, and so these are removed fromG and a
perfect matching of the remaining uncovered vertices inG is
calculated. For convenience, we index the rows and columns
by binary vectors in the obvious way, where for example for
the rows,(0, . . . , 0, 0) means no input vertex was removed
(i.e., no input vertex is inZ), (0, . . . , 0, 1) means the last
input vertex was removed, up to(1, . . . , 1, 1) which means
all input vertices were removed.

Matchgates with only input vertices are calledrecognizers,
those with only output vertices are calledgenerators, and
those with both are calledtransducers. The examples we
show in this paper will only use recognizers and generators.
This obviously restricts our networks of relations to be bi-
partite since we may only connect inputs with outputs. This,
however, is not a severe restriction since most useful networks
are bi-partite by their nature, and when they are not, we
could add auxiliary vertices on the edges (equality on two
variables) to make them bi-partite. By definition, the signature
of a recognizer is a column vector, while the signature of a
generator is a row vector.

Example 2. The recognizer matchgate seen in Figure4 con-
tains four vertices and six edges. Three of the vertices (depicted
as white circles) are input vertices and lie on the outer face of
the graph. The shaded area is just used to show the outer face of
the graph and has no mathematical meaning to it. The signature
of the matchgate is the following column vector:

index signature
(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(0, 1, 1)
(1, 0, 0)
(1, 0, 1)
(1, 1, 0)
(1, 1, 1)

























w1w5 + w2w6 + w3w4

0
0

w4

0
w5

w6

0

























.

At this point we note that had we said the matchgate was
a generator instead of a recognizer, we would have gotten the

v1v2

v3

w1

w2

w3

w4w5

w6

Figure 4. The matchgate of Example 2

exact same signature only as a row vector.
Let us examine a few of the entries in the signature. For

the entry indexed by(1, 1, 0) we haveZ = {v1, v2} which
simulates a global perfect matching which already coversv1

andv2, so G − Z contains only two surviving vertices which
arev3 and the inner vertex. Thus,PerfMatch(G − Z) = w6

because there is exactly one perfect matching coveringv3 and
the inner vertex, and it contains just the edge with weightw6.

For the entry indexed by(0, 0, 0) we haveZ = ∅ and it
follows that there are three different perfect matchings covering
the four vertices ofG − Z. For each perfect matching we take
the product of the weights of its edges, and sum over all perfect
matchings to getPerfMatch(G − Z) = w1w5 + w2w6 +
w3w4.

Finally, for the entry indexed by(0, 0, 1) we haveZ = {v3}
and soG − Z contains three surviving vertices. Obviously,
there is no perfect matching in a graph with an odd number
of vertices and thus this entry is0, as are the entries indexed by
(0, 1, 0), (1, 0, 0), and(1, 1, 1). 2

Now, if only we could get matchgates with signatures which
equal the signatures of the relations we aim to replace, then
our work would be done. However, by Example 2, it is clearly
seen that entries with an index of odd (even) weight are forced
to be0 if the matchgate has an even (odd) number of vertices.
Unfortunately for us, a quick glance at the signature of a
relation such as the not-all-equal relation on three variables
seen in Example 1 reveals that it contains non-zero entries
in both odd-weight and even-weight indices. To extend the
expressive power of matchgates we now introduce a change
of basis.

Without knowing it, all our examples thus far used the
standard basis. Abasis is an ordered set of vectors. In
what follows we will restrict ourselves to bases made up of
two vectors of length2 which are also linearly independent.
It should be noted though, that in the general case those
restrictions are unnecessary, and a basis should not be confused
with the linear-algebra notion of a basis. Thestandard basisis
defined asb = [(1, 0), (0, 1)]. We will always denote the first
vector in the basis asn which will play the role of a “logical”
0, and the second vector asp which will be a “logical” 1.

Let β = [n, p] = [(n0, n1), (p0, p1)] be some basis. We
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define thebasis translation matrixas

Tβ
def
=

(

n0 n1

p0 p1

)

.

Let Γ be some matchgate withn input/output vertices. Using
this matrix we can define the signature ofΓ under the basis
β, which we denote assigβ(Γ), using two different equations
depending on whether the matchgate is a generator or a
recognizer:

sigβ(Γ) · T⊗n
β

= sig
b
(Γ) for Γ a generator (1)

T⊗n
β

· sig
b
(Γ) = sigβ(Γ) for Γ a recognizer (2)

whereX⊗ndef
= X ⊗ · · · ⊗ X is n times the Kronecker product.

We can also query the value of individual entries insigβ(Γ)
using thevalG andvalR operators for generators and recog-
nizers respectively. Given somex∈ {n, p}⊗n, we associate
with it an index vector by substituting0 for n and 1 for p.
For example, withn ⊗ p ⊗ n we associate the index vector
(0, 1, 0). We now definevalGβ(Γ , x) to be the entry in
sigβ(Γ) with the index associated withx. By (1) this is
simply the coefficient ofx in the linear combination making
up sig

b
(Γ). Similarly, valRβ(Γ , x) is defined as the entry in

sigβ(Γ) with the index associated withx. By (2) this is simply
the dot productx · sig

b
(Γ).

Example 3. Returning to our running example we shall build
a generator matchgate forR 6= and also a recognizer matchgate
for R 6=. We have already noted that using the standard basis
will not work in this case since the signature ofR 6= has non-
zero entries in both odd-weight and even-weight indices.

We will choose a basisβ and setsigβ(Γ) to be equal to
the signature of the relation we want to replace. We will then
calculatesig

b
(Γ) using (1) or (2) (depending on whether we

want a generator or a recognizer) and hope that all the non-zero
entries fall in either the even-weight indices, or the odd-weight
indices.

We choose a basis which works well for self-dual relations
(as isR 6=) which is

β = [n, p] = [(1, 1), (1,−1)]. (3)

We notice thatT⊗n
β

is a Hadamard matrix. We start by building
a generator forR 6=. Substituting the values in(1) we get

(0, 1, 1, 1, 1, 1, 1, 0) · T⊗3
β

= (6, 0, 0,−2, 0,−2,−2, 0).

Indeed, as seen on the right, all the non-zero entries are in
even-weight indices. Choosing values forw1, . . . , w6 so that
the matchgate of Example2 realizes this signature is easy:

w1 = w2 = w3 = −1 and w4 = w5 = w6 = −2.

There is more than one solution to this under-constrained set of
equations, but any solution will do.

We also want a recognizer forR 6= and using(2),

T⊗3
β

·

























3/4
0
0

−1/4
0

−1/4
−1/4

0

























=

























0
1
1
1
1
1
1
0

























we again see all the non-zero values move to even-weight
indices. We can now choose weights for the matchgate:

w1 = w2 = w3 = −1 and w4 = w5 = w6 = −1

4
.

It is interesting to note that using this Hadamard basis we get
signatures that contain the Walsh transform of the signatures of
the original relations (up to a missing normalizing factor).

The weighted graphs for the generator matchgate forR 6= and
the recognizer matchgate forR 6= are shown in Figure5. 2

−1

−1 −1
−2

−2−2

−1

−1

−1
− 1

4

− 1
4− 1

4

(a) (b)

Figure 5. Using the basisβ = [(1, 1), (1,−1)] we get weighted graphs for
(a) a generator forR 6=, and (b) a recognizer forR 6=.

Finally, we zoom out to examine the entire matchgrid. Let
M be some matchgrid made up ofr recognizersA1, . . . , Ar,
and g generatorsB1, . . . , Bg, and let it contain a total off
connecting edges between the matchgates. We can think of
each edge as carrying a value fromβ = [n, p], and so each
possible assignment to edges is of the formx∈β⊗ f . By abuse
of notation, letvalRβ(Ai , x) andvalGβ(Bi , x) stand for the
normal valR and valG operators when we restrictx to the
edges incident toAi or Bi appropriately. We define a global
property of the matchgrid called theHolant,

Holant(M)
def
=

∑
x∈β⊗ f

(

∏
16 j6g

valGβ(B j, x)

)(

∏
16i6r

valRβ(Ai , x)

)

.

We now have all the necessary definitions in place to state
the main result of Valiant [36]:

Theorem 4.For any matchgridM over any basisβ, if M has
weighted graphG then

Holant(M) = PerfMatch(G).

While the connections between matchgrids and perfect
matchings have been evident throughout this section, the
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connection to satisfying assignments for networks of relations
is a little more subtle. Given a matchgrid built using this
method, we can view edges between matchgates as carrying
values from the basisβ = [n, p], which we can think of as
“logical” 0 and “logical” 1. The operatorsvalG andvalR in
this basis, query the signatures of the matchgates overβ which
are simply the signatures of the original relations. Thus, the
Holant goes over all possible assignments of “logical”0’s and
1’s to the edges between matchgates (which are the edges of
the original network of relations), and queries the signatures
of the relations for that assignment getting a value of either
0 or 1 for being unsatisfied or satisfied respectively. Since we
take the product ofvalG and valR, only if all relations are
satisfied we get a contribution of1 to the sum, thus counting
exactly the satisfying assignments.

On the other hand, Theorem 4 is invariant under a change
of bases, and it is the different handling of generators and
recognizers which makes this possible. Thus, if we choose
to view the same matchgrid using the standard basis, then
by definition, valG and valR depend on the perfect match-
ings of the graph. This establishes a connection between
PerfMatch(G) and the number of satisfying assignments to
the original network of relations. For the rigorous proof of
Theorem 4 the reader is referred to [36].

Example 5. We complete the matchgrid for the network of
relations of Example1. From Example3, under the basis
β = [(1, 1), (1,−1)] we already have a generator matchgate
for R 6= and a recognizer matchgate forR 6=. The remaining
relation isφ+, but we note that we need both a generator
and a recognizer for it. The resulting matchgrid is shown in
Figure 6. The skeptical reader is encouraged to verify that the
weighted perfect matching of this graph is indeed18, as is the
total number of satisfying assignments to the original network
of relations. 2

−1

−1 −1

−2

−2
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−1

−1 −1

− 1
4− 1

4

− 1
4
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1
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1

1

1

2
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Figure 6. The matchgrid for the network of relations from Example 1

C. The FKT Method

Unless weighted perfect matchings are easier to handle,
the reduction described in the previous section is useless.
Fortunately for us, the FKT method gives a simple expression
for the weighted perfect matching of certain graphs which
is also computable efficiently. The method was developed
independently and concurrently by Fisher and Temperley [31],
[10], and by Kasteleyn [17]. The motivation for their work was
to find an alternative solution to the Ising problem, simpler
than the original solution given by Onsager [26]. The solution
more commonly used today and the one we describe in this
work, is due to the general method developed by Kasteleyn in
[17] and in more detail in [18]. It is also interesting to note that
very simple gadgets were employed in some occasions [11],
[2] without reaching the general treatment given by Valiant
which we described in the previous section.

Let G be a graph with weights on the edges, and letA =
(ai, j) be its n × n adjacency matrix whereai, j is the weight
of the edge between verticesi and j. Since we are interested
in graphs with perfect matchings we assumen is even. A
perfect matching can obviously be described by the unordered
partition π of the numbers{1, 2, . . . , n} into pairs, which we
denote by| p1 p2 | p3 p4 | . . . | pn−1 pn | . Using this notation
it follows that

PerfMatch(G) = ∑
π

ap1 ,p2 ap3 ,p4 . . . apn−1 ,pn ,

whereπ goes over all such unordered partitions. Since we only
consider unordered partitions, we select for each partition a
canonical representation in whichp1 < p2, p3 < p4, up until
pn−1 < pn, as well asp1 < p3 < · · · < pn−1. Using this
convention we note that we only use the entries strictly above
the main diagonal of the matrixA.

This expression seems very similar to another expression
known as the Pfaffian which is defined as

Pf(A)
def
= ∑

π

sgn(π)ap1 ,p2 ap3 ,p4 . . . apn−1 ,pn

where againπ goes over all the canonical partitions and
sgn(π) is the sign ofπ when considered as the permutation
sending i → pi. This in itself is again reminiscent of the
more widely used determinant. Indeed, since we only use the
entries above the main diagonal, if we completeA so as to
make it skew-symmetric, that isai, j = −a j,i, then we get the
well-known identity

[Pf(A)]2 = det(A).

Thus, the Pfaffian of a skew-symmetric matrix is easily
computed up to its sign by taking the square root of the
determinant.

Returning to our problem of calculating the weighted perfect
matching, we are faced with the problem caused by the added
sgn(π) in the expression for the Pfaffian. This causes some
of the perfect matchings to be counted with the wrong sign. It
was the ingenious solution of Kasteleyn [17] to flip the signs
of some of the entries of the original matrixA to compensate
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for sgn(π) and make the Pfaffian count all the original perfect
matchings with the same sign3.

An orientation of the an undirected graphG is simply an
assignment of a direction to each of the edges of the graph. The
solution given by Kasteleyn [17] requires a special orientation
which we will now describe. LetM and M′ be two perfect
matchings in the graphG, and let⊕ denote the symmetric
difference operation between sets. ThenM ⊕ M′ is a set of
cycles of even length inG. If we traverse any of those cycles
in some direction, then some of the edges will be oriented in
agreement with our traversal direction, and some will not. A
Pfaffian orientationof a graphG is an orientation such that for
eachM and M′, any cycle inM ⊕ M′ has an odd number of
edges oriented in agreement with the traversal direction. Note
that since the cycles are always of even length, the traversal
direction does not change the parity of the number of edges
agreeing with it.

Given a weighted graphG, and a Pfaffian orientation of its
edges, we build a modified skew-symmetric adjacency matrix
A = (ai, j) as follows:

ai, j =











0 no edge betweeni and j

w(ei, j) if i → j

−w(ei, j) if j → i

where i → j denotes the edge between verticesi and j is
oriented fromi to j. Note thatA is not the adjacency matrix
of the graphG in the usual sense. Using this construction
Kasteleyn [17] showed that

PerfMatch(G) = ± Pf(A)

where, using the Pfaffian orientation, either all perfect match-
ings are counted with a positive sign or all with a negative
sign, depending on the chosen Pfaffian orientation only. Since
in most cases we know the sign of the outcome, this unknown
degree of freedom may be easily fixed.

It now remains a matter of finding out which graphs allow a
Pfaffian orientation. Such graphs are calledPfaffian orientable.
In his later work, Kasteleyn [18] showed that all planar
graphs are Pfaffian orientable, which is the reason we required
matchgrids to be planar in the previous section. For planar
graphs, it was shown in [18], that if we orient the edges such
that every clockwise walk on a face of the graph has an odd
number of edges agreeing, then that orientation is a Pfaffian
orientation. As a result, a simple polynomial time algorithm
which finds such an orientation was also shown by Kasteleyn.

For further reading on generalized dimer problems with
boundary conditions the reader is referred to the excellent
survey in [20] (and references therein). Planar graphs are not
the only Pfaffian orientable graphs. More results on Pfaffian-
orientable graphs are given by the survey in [33], and the work
in [25]. Advances in Pfaffians and perfect matchings may be
found in [21]. Pfaffian orientations are also used to efficiently
calculate some permanents, see [38], [27].

3The reader may notice at this point thatPerfMatch(G) is simply the
Hafnian of the matrixA, i.e., the Pfaffian withoutsgn(π). In fact, the Hafnian
is to the Pfaffian as the permanent is to the determinant. However, both the
Hafnian and the permanent are notoriously hard to handle and soit is worth
the trouble to work with the Pfaffian and correct the sign problems.

Example 6.For the last part of our running example we orient
the edges of the graph to create a Pfaffian orientation. The
resulting oriented graph is shown in Figure7. If we write down
the modified adjacency matrix for the graph (after fixing some
arbitrary ordering of the vertices) we get:

A =

















































0 −1 1 − 1
4 0 0 0 0 0 −1 0 0 0 0 0 0

1 0 −1 − 1
4 0 0 0 0 0 0 0 −1 0 0 0 0

−1 1 0 − 1
4 −1 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 −1 1 2 0 0 0 0 0 0 0 0

0 0 0 0 1 0 −1 2 0 0 0 0 0 1 0 0

0 0 0 0 −1 1 0 2 0 0 0 0 0 0 0 1

0 0 0 0 −2 −2 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

1 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0

















































Again, the skeptical reader will find out that

|Pf(A)| =
√

det(A) = 18

which is both the weighted perfect matching of the graph and
the total number of satisfying assignments to the network of
relations. 2
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Figure 7. The matchgrid for the network of relations from Example 1 with
a Pfaffian orientation of the edges

III. E XACT CALCULATION OF THE CAPACITY OF THE

PATH-COVER CONSTRAINED SYSTEM

In this section we address a specific two-dimensional con-
strained coding system and demonstrate how to apply our new
technique (described in Section II) to derive an expression for
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its exact capacity. The derivation consists of the following
steps:

A. Definition of the constrained system.
B. Reduction to a network of relations.
C. Holographic reduction to a matchgrid.
D. Pfaffian orientation of the graph.
E. Derivation of a Closed form expression for the exact

capacity.

A. The Path-Cover Constrained System

Most constrained systems are easily defined by a finite
set of forbidden patterns. For example, theno-isolated-bit
constraint forbids a bit to be surrounded on all four sides by
its complement. The famous(1, ∞)-RLL constraint, a variant
of which will be discussed in the next section, forbids two
adjacent1’s. For our example we choose a constraint we call
the Path-Cover Constraint (PC Constraint), and which we
motivate by first examining its one-dimensional version. If we
are given a graphG = (V, E), a path-cover for the graph
is a set of simple paths (open or closed) of positive length,
which are vertex disjoint, and which cover all the vertices. An
alternative way of stating this constraint is that given a graph,
we assign either a0 or a 1 to each of the edges, such that
when removing the edges with a0, all the vertices remain
with degree of either one or two.

In the one-dimensional case the graphG is simply the
one-dimensional lattice with verticesV = {v0, v1, . . . , vn}
and edgesE = {(vi , vi+1) | 0 6 i 6 n − 1}. It is easily
seen that a valid PC assignment of values to edges is any
assignment which does not contain two adjacent0’s. Thus, the
one-dimensional PC constraint is the famous one-dimensional
(0, 1)-RLL constraint (and with bit-flipping, the(1, ∞)-RLL
constraint). The capacity in this case is known to belog2[(1 +√

5)/2] = 0.69424 . . . .
Turning to two-dimensions, we choose the two-dimensional

triangular grid as the graphG: we tile the plane with regular
triangles, place a vertex at the center of each triangle, and draw
an edge between vertices whose triangles share a face. Again,
we assign either a0 or a 1 to the edges of the graph such
that after removing the edges assigned a0, all the remaining
vertices are of degree either1 or 2. We note that this time,
the PC constraint is different from the usual two-dimensional
RLL constraint. Also, unlike the two-dimensional RLL and
the no-isolated-bit constraints where values are assigned to
vertices, in the PC constraints values are assigned to edges.
See Figure 8 for an illustration of the forbidden patterns in
the three discussed constraints.

B. The Network of Relations

There is a multitude of possible reductions of a constrained
two dimensional array on the plane to a network of relations.
We show a simple reduction for which the constrained arrays
are in an “almost” one-to-one correspondence with the satis-
fying assignments to the network.

We think of the triangular grid as drawn on a plane. We
replace each vertex of the grid with the relationR 6= on three
variables. This relation makes sure that the three adjacent cells

0

0 0
0

0

0

0

0

000

1

11
1 1

1

111

1

11 1

1

1

(a) (b)

(c)

Figure 8. The forbidden patterns of (a) the no-isolated-bit constraint, (b) the
(1, ∞)-RLL constraint on the square lattice, and (c) the PC constraint on the
triangular lattice

Figure 9. The top image shows part of a network of relations for the PC
constraint. Each filled circle represents theR 6= relation. The gray triangles
show the original cells of the triangular grid. The bottom image shows the
top left corner of the array with the filled squares representing theφ+ relation.

do not contain the same bit, i.e., the forbidden pattern of PC. It
is easy to be convinced that, if we ignore the perimeter of the
array, every constrained array induces exactly one satisfying
assignment and vice versa. The resulting network of relations
is shown in Figure 9.

We do however have to take care of the perimeter of the
array as well. To do so, we connect dangling edges to extra
vertices of the accept-all relationφ+. Each such vertex has the
potential of multiplying the number of satisfying assignments
by a factor of2. But since we have onlyO(n) such vertices,
this does not change the capacity as calculated by counting
the total number of satisfying assignments. The extra accept-
all vertices are also shown in Figure 9.
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C. The Matchgrid

It is easily seen that the network of relations we built in
the previous section is bi-partite graph by noting that the
upright triangles are connected only to the inverted triangles,
and vice versa. Conveniently for us, for the main bulk of the
network, we have just one type of relation, but we do have
to specify some as recognizers and some as generators. We
arbitrarily choose to build a generatorR 6= in inverted triangles,
and a recognizerR 6= in upright triangles. Those were already
realized in Example 3 using the basis given in (3).

For the perimeter of the network we need to implement
φ+ both as a generator and as a recognizer. Again, this was
already realized in Example 3.

D. The Pfaffian Orientation

Finding a Pfaffian orientation for the graph is an easy task.
The orientation is not necessarily unique and some may in
fact be quite complex to describe. However, the extremely
regular nature of the graph suggests the existence of a simple
orientation.

If we closely examine the network of relations in Figure 9,
we see that, apart from the perimeter of the array, it is made
up of a singlebasic blockand its translations. The simplest
basic block is just a recognizerR 6= vertex and a generatorR 6=
vertex. This basic block may be oriented as shown in Figure
10. It is also easy to verify Kasteleyn’s orientation rule for
planar graphs: every clockwise walk on an inner face has an
odd number of edges agreeing. This may be verified both for
the inner faces of the block, and the inner faces created by the
joining of a few blocks.

−1

−1 −1

−2

−2

−2

−1

−1 −1

− 1
4

− 1
4

− 1
4

1

1

1

1
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3

1

4

5

6

7

8

Figure 10. A Pfaffian orientation of the basic block. The dotted edges denote
the edges between translations of the basic block. The numbers in squares
index the vertices.

Finally, we also have to orient the edges which correspond
to theφ+ matchgates which lie on the perimeter of the array.
Those matchgates do not contain any inner face themselves,

and do not form an inner face with the rest of the graph. Thus,
they may be oriented arbitrarily.

E. The Exact Capacity

For mathematical convenience, from now on when we say
“an n× n array” we mean ann× n set of basic blocks. In our
case, the basic block depicted in Figure 10 contains twoR 6=
vertices and (when viewed periodically) three edges from the
original network which are to be assigned either a0 or a 1. In
light of the previous sections, the capacity of the constrained
systemS we are now examining is given by

cap(S) = lim
n→∞

log2 |Pf(A)|
3n2

= lim
n→∞

log2

√

det(A)

3n2

where A is the skew-symmetric adjacency matrix of the
matchgrid corresponding to then × n constrained array. The
3 in the denominator comes from the fact that a basic block
contains three bit storage positions (three edges from the
original network to be assigned a value).

A derivation of an expression for the exact capacity largely
depends on the ease of manipulating the matrixA. The first
simplification we do is note that the matchgates forφ+ contain
just one edge which must be taken in any perfect matching,
which also forces the edge connecting the matchgate to its
single neighboring matchgate to be dropped. Since the weight
of the edge is a constant (depending on whether it is a
generator or a recognizer), and since we have onlyO(n)
such matchgates along the perimeter, we may ignore them
altogether without changing the resulting capacity calculation.
So from now on, by abuse of notation, letA denote the skew-
symmetric adjacency matrix with theφ+ matchgates and their
connecting edges removed.

The components for a compact representation ofA are the
skew-symmetric matrix for the basic block (where the vertices
are indexed as in Figure 10),

B =

























0 −1 1 − 1
4 −1 0 0 0

1 0 −1 − 1
4 0 0 0 0

−1 1 0 − 1
4 0 0 0 0

1
4

1
4

1
4 0 0 0 0 0

1 0 0 0 0 −1 1 2
0 0 0 0 1 0 −1 2
0 0 0 0 −1 1 0 2
0 0 0 0 −2 −2 −2 0

























,

and the matrix∆i, j (of the same dimensions asB) which is
all zeroes except for position(i, j) which is 1. Furthermore,
we needIn the n × n identity matrix, and then × n matrix

Un
def
=















0 1
0 1

. . .
.. .
0 1

0















with the unspecified positions being zero as well.
We have ann × n array of basic blocks which we order in

the natural way. This part of the graph is represented by the
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skew-symmetric adjacency matrix

In ⊗ In ⊗ B.

We still have to represent the edges between basic blocks in
the same row,

In ⊗ Un ⊗ ∆6,2 − In ⊗ UT
n ⊗ ∆T

6,2,

and the edges between basic blocks in different rows,

Un ⊗ In ⊗ ∆7,3 − UT
n ⊗ In ⊗ ∆T

7,3.

Thus, we get an expression for the skew-symmetric adjacency
matrix A,

A = In ⊗ In ⊗ B + In ⊗ Un ⊗ ∆6,2 − In ⊗ UT
n ⊗ ∆T

6,2

+ Un ⊗ In ⊗ ∆7,3 − UT
n ⊗ In ⊗ ∆T

7,3. (4)

For the last step we rely on the theory of spectral dis-
tribution of Toeplitz matrices (see Tilli [34]). Let us denote

Q
def
= [−π , π ]. For natural numbersp, k > 1, let an integrable

p-variate function f : Qp → Ck×k and a multi-indexn =
(n1, . . . , np), ni > 1 be given. Thep-level Toeplitz matrix
Tn( f ) is defined as

Tn( f )
def
=

n1−1

∑
j1=−n1+1

. . .
np−1

∑
jp=−np+1

J
( j1)
n1

⊗ · · · ⊗ J
( jp)
np ⊗ a j1 ,..., jp

( f )

where J
(l)
m denotes the matrix of orderm whose i, j entry

equals1 if j − i = l and equals zero otherwise, and where

a j1 ,..., jp
( f )

def
=

1

(2π)p

∫

Qp
f (φ)e−i( j1φ1+···+ jpφp)dφ

is a matrix inCk×k and i =
√
−1. The following theorem is

due to Tilli [34].

Theorem 7. If f : Qp → Ck×k is an integrable Hermitian
matrix-valued function, then for any functionF, uniformly
continuous and bounded overR it holds

lim
n→∞

1

n1 . . . np

kn1 ...np

∑
j=1

F[λ j(Tn( f ))] =

=
1

(2π)p

∫

Qp

k

∑
j=1

F[λ j( f (φ))]dφ

whereλ j(M) denotes thej-th eigenvalue ofM.

To apply this theorem to our needs we notice the following:
First, for an n × n matrix X we have log2 |det(X)| =
∑n

i=1 log2 |λi(X)|. Second, we notice thatA from (4) is a
2-level Toeplitz matrix, but it is skew-symmetric and not
Hermitian as required. This is easily fixed by noting thatiA
is Hermitian, and since the order ofA is a multiple of4, then
det(A) = det(iA). Thus,iA = Tn( f ) where we define

f (φ1,φ2) = i[B + eiφ1∆6,2 − e−iφ1∆T
6,2

+ eiφ2∆7,3 − e−iφ2∆T
7,3].

Before we continue we need a lemma to connect the
eigenvalues off with those ofTn( f ).

Lemma 8. If f : Qp → Ck×k is an integrable Hermitian
matrix-valued function, andm, M ∈R are constants such that

m 6 λ j( f ) 6 M

for all 1 6 j 6 k, then

m 6 λ j(Tn( f )) 6 M

for all 1 6 j 6 kn1 . . . np.

Proof: First, it is an easy exercise to show that when
f is Hermitian thenTn( f ) is Hermitian as well. Since the
eigenvalues of a Hermitian matrix are all real, letλ(·) andλ(·)
denote the minimal and maximal eigenvalues respectively. It
is well known that for a Hermitian matrixH,

λ(H) = min
x 6=0

x∗Hx

x∗x
and λ(H) = max

x 6=0

x∗Hx

x∗x
(5)

wherex∗ denotes the conjugate transpose ofx.
Let m∈R be a lower bound on the eigenvalues off . By

(5), for every vectorx (including the0 vector),x∗ f x > mx∗x.
From now on it is a matter of keeping track of the indices
properly. Leti = (i1, . . . , ip) and j = ( j1, . . . , jp) be multi-
indices. By the definition ofTn( f ) we have (Tn( f ))i, j =
a j−i( f ). Let x 6= 0 be a vector of lengthkn1 . . . np which
we divide into contiguous blocks of lengthk we index by the
same multi-indices. Thus,

x∗Tn( f )x = ∑
i

∑
j

x∗i a j−i( f )x j

= ∑
i

∑
j

x∗i

[

1

(2π)p

∫

Qp
f (φ)e−i( j−i)·φdφ

]

x j

=
1

(2π)p

∫

Qp
∑

i
∑

j

e−i( j−i)·φx∗i f (φ)x jdφ

>
m

(2π)p

∫

Qp
∑

i
∑

j

e−i( j−i)·φx∗i x jdφ

=
m

(2π)p

∫

Qp

∣

∣

∣

∣

∣

∑
j

e−i j·φx j

∣

∣

∣

∣

∣

2

dφ. (6)

We also have

x∗x = ∑
j

∣

∣x j

∣

∣

2
=

1

(2π)p

∫

Qp

∣

∣

∣

∣

∣

∑
j

e−i j·φx j

∣

∣

∣

∣

∣

2

dφ. (7)

Combining (6) and (7) it now follows that

λ(Tn( f )) = min
x 6=0

x∗Tn( f )x

x∗x
> m

as we wanted to prove. The proof for the upper bound is
symmetric.

Getting back to our problem, since we are interested
in log2 |det(iA)| = ∑i log2 |λi(iA)|, we want to bound
the magnitudeof the eigenvalues ofiA = Tn( f (φ1,φ2)).
We do this by bounding the magnitude of the eigenval-
ues of f (φ1,φ2) and using Lemma 8. We do not really
need to find the exact values ofm, M ∈R such thatm 6

|λi( f (φ1,φ2))| 6 M, but show thatM < ∞ and m > 0.
Our first observation is that there existsM ∈R such that

λ( f (φ1,φ2)) 6 M < ∞, since f (φ1,φ2) is a matrix of
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constant size and bounded magnitude entries. Thus, using
standard bounding techniques (for example, Gershgorin circle
theorem), the maximal magnitude of an eigenvalue is bounded
by a constant. To continue, a simple calculation shows that

det( f (φ1,φ2)) =

= 21 − 4 cosφ1 − 4 cosφ2 − 4 cos(φ1 −φ2).

Thus, we havedet( f (φ1,φ2)) > 9. Since we also know that
det( f (φ1,φ2)) = ∏i λi( f (φ1,φ2)) and |λi( f (φ1,φ2))| 6

M and we have a constant number of elements in the product,
it follows that there is a constantm∈R, m > 0, such that
|λi( f (φ1,φ2))| > m.

Now that we have bounded the magnitude of the eigenvalues
of f (φ1,φ2), and by Lemma 8, those ofTn( f (φ1,φ2)), we
are ready to use Theorem 7. Let us define the functionF :
R → R as

F(x)
def
=











log2 |m| |x| < m

log2 |x| m 6 |x| 6 M

log2 |M| |x| > M.

The functionF is uniformly continuous and bounded overR.
Furthermore,

log2 |det( f (φ1,φ2))| = ∑
i

log2 |λi( f (φ1,φ2))|

= ∑
i

F(λi( f (φ1,φ2)))

and also

log2 |det(Tn( f ))| = ∑
i

log2 |λi(Tn( f ))|

= ∑
i

F(λi(Tn( f ))).

By Theorem 7 it now follows that

cap(S) = lim
n→∞

log2

√

det(A)

3n2

= lim
n→∞

1

6n2
log2 |det(Tn( f ))|

=
1

24π2

∫ π

−π

∫ π

−π
log2 |det( f (φ1,φ2))| dφ1dφ2

=
1

24π2

∫ π

−π

∫ π

−π
log2 |21 − 4 cosφ1 − 4 cosφ2

− 4 cos(φ1 −φ2)|dφ1dφ2

= 0.72399217 . . .

As far as we know, the number that we just calculated,
namely, 0.72399217 . . . , is the first known nontrivial exact
capacity of a 2 dimensional constrained system.

A couple of remarks regarding the calculation: If the eigen-
values ofiA were not bounded away from0, then we could
not set F(x) from Theorem 7 to behave likelog2 |x| on
the interval containing the eigenvalues and still be bounded
and uniformly continuous. This creates a problem4 in using

4It should be noted that physicists have been using this claim without
rigorous proof for over 40 years. The earliest examples to our knowledge
are [24], and also [23] in which an early incorrect form of asymptotic matrix
equivalence is used as proof.

Theorem 7. It might be possible to get an equivalent result
to Theorem 7 forf (φ) which are trigonometric polynomials
of degree1 (see [5]). If all else fails and the eigenvalues
are not bounded away from0, we can convert the equality
of Theorem 7 to an inequality, stating that the limit is less
than or equal to the integral. This is done by choosing the

sequence of functionsFℓ(x)
def
= max {−ℓ, log2 |x|} (where

obviously Fℓ(x) > log2 |x|), using Theorem 7, and finally
using monotone convergence asℓ → ∞.

IV. A POLYNOMIAL -TIME ALGORITHM FOR COUNTING

CONSTRAINED ARRAYS

In this section we describe an algorithm for counting the
exact number of constrained arrays of sizen × n that runs
in time polynomial in n. Though this algorithm applies to
the example from the last section, we use the opportunity to
switch examples and show two generalizations which extend
the reach of our method. The first one we callgeneralized
relations, and the second is the use of non-planar graphs.

The constraint we use throughout this section may seem
contrived, but it is instrumental in showing the added degrees
of freedom provided by being able to count constrained arrays
on other surfaces, such as a torus in this case, and the benefit
of generalized relations. It is also interesting in the sense that
local constraints enforced by the relations result in a global
constraint. The constraint we examine is similar to the(1, ∞)-
RLL constraint defined by the forbidden patterns shown in
Figure 8. Aviolation of the(1, ∞)-RLL constraint is a pair of
adjacent1’s where we have two kinds of violations: horizontal
and vertical. We define thebalanced-violation(1, ∞)-RLL
constraintas the set of all binaryn × n arrays such that the
number of horizontal violations equals the number of vertical
violations.

We will consider arrays which are placed on a torus. To be
mathematically exact, we index then × n array byZn ×Zn,
and since we are now working on the square grid, the positions
adjacent to(x, y) are (working modulon of course)

{(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)} .

Thus, ann × n array A is balanced-violation(1, ∞)-RLL
constrained, if

∣

∣

{

Ax,y = Ax+1,y = 1
}∣

∣ =
∣

∣

{

Ax,y = Ax,y+1 = 1
}∣

∣ ,

where all indices are taken modulon. We note that the famous
(1, ∞)-RLL constraint is a subset of this constraint in which
the number of violations is further constrained to be zero.

A. Generalized Relations

Given a network of relations on a graphG = (V, E), with
every vertexv∈V representing a relationRv ⊆ Ωdeg(v), we
have considered assignments of values to the edgesA : E →
Ω. We called assignmentA a satisfying assignment if every
relation was satisfied, i.e., for everyv, Av ∈ Rv.

If we remember that we can think of a relation onn
variables as a functionR : Ωn → {0, 1}, then the number
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of satisfying assignments is also represented by

σ(G) = ∑
A

∏
v∈V

Rv(Av), (8)

where the sum is over all|Ω||E| assignments. Obviously, only
if all vertices are satisfied then the product is1. Thus the sum
is counting only satisfying assignments.

The generalization is now immediately clear. Ageneralized
relation on n variables is a function R : Ωn → C. The
“number of satisfying assignments” is still defined by (8) but
is not necessarily a non-negative integer anymore. Intuitively,
every assignment gets scored by the product of the “amount of
satisfaction” of individual generalized relations. We also note
that, although we only useC, it may be replaced by other
algebraic structures.

We now turn to designing the network of relations for
our constrained system. We still useΩ = {0, 1}. Let
m∈N be some integer. We will construct a set of networks
N0, N1, . . . , Nm−1 where inNk, 0 6 k 6 m − 1, we will use
the following four relations:

x1 x2 x3 R+
= R−

=

0 0 0 1 1
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0

1 1 1 ω3k
2m ω−3k

2m

x1 x2 R+
nand R−

nand
0 0 1 1
0 1 1 1
1 0 1 1

1 1 ωk
m ω−k

m

whereωm
def
= e2π i/m. The network of relations is shown in

Figure 11.

Figure 11. Part of a network of relations for the balanced-violation(1, ∞)-
RLL constraint. Circles represent theR= relation and squares represent the
Rnand relations. Filled vertices are of theR+ variant while empty ones are of
the R− variant. The gray squares show the original cells of the rectangular
grid.

The first thing to note about this network of relations, is
that the4-cycles with twoR+

= and two R−
= will zero out an

assignment unless the wires incident to it are all0 or all 1.
Furthermore, in the case of an all1 assignment, the score
of the assignment is multiplied twice byω3k

2m and twice by
ω−3k

2m and so in total, both the all0 assignment and the all1

assignment contribute a multiplicative factor of1 to the score
of the assignment. Essentially, the4-cycle is simply an equality
relation on four legs. If we look at the gray cells of Figure 11,
which represent the original cells of the square lattice, then
the 4-cycle inside each cell makes sure a single value, either
a 0 or a 1, is assigned to edges exiting the cell in assignments
with non-zero contribution. This value reflects the value of the
cell in the constrained array.

We also have to somehow check for violations, i.e., two
horizontally- or vertically-adjacent cells with value of1 in the
constrained array. To this end, the relationsR+

nand and R−
nand

are placed between the gray squares of Figure 11. They check
the value of two adjacent cells as reflected by the assignment
to the edges exiting the two adjacent gray squares. Whenever
two adjacent1’s are detected, the relations penalize the number
of satisfying assignments by a multiplicative factor of either
ωk

m for a vertical violation, orω−k
m for a horizontal one.

Now assume some assignment hasv vertical violations and
h horizontal ones. The score of this assignment is obviously
ω

k(v−h)
m . If we denote byAv,h the number of arrays withv

vertical violations andh horizontal violations, and byσk the
number of satisfying assignments toNk, then

σk =
n2

∑
v=0

n2

∑
h=0

Av,hω
k(v−h)
m .

It follows that

1

m

m−1

∑
k=0

σk =
n2

∑
v=0

n2

∑
h=0

Av,h
1

m

m−1

∑
k=0

ω
k(v−h)
m

= ∑
v≡h (mod m)

Av,h.

Since0 6 v, h 6 n2, if we choose anym > n2 then

1

m

m−1

∑
k=0

σk = ∑
v≡h (mod m)

Av,h = ∑
v=h

Av,h,

which is exactly what we wanted to count in the first place.
Two major issues remain to be dealt with: the fact that we have
a non-planar graph because of the torus, and the fact that we
can calculate the above expression in polynomial time.

B. Counting Arrays on a Torus

We start in the usual manner: we arbitrarily choose to
realize R+

= and R+
nand as generators, whileR−

= and R−
nand

as recognizers. For the networkNk, 0 6 k 6 m − 1, we
choose the basisβ = [(1, 1), (ω−k

2m,−ω−k
2m)] and the resulting

matchgate realizations are shown in Figure 12.
If we ignore the fact that we are working on a torus, then

finding a Pfaffian orientation for the graph is a task which may
be done in polynomial time (see [18]). We now turn to handle
the problem of working on a torus. If we can draw the graph
on a surface with genusg without any edges crossing we call
it a graph of genusg. Kasteleyn stated without proof, that the
perfect matching of a graph of genusg may be calculated using
a linear combination of4g Pfaffians. A proof of this statement
may be found in [13], and for more general surfaces, in [32].
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1/3

1/3 1/3
2

22

1/3

1/3

1/3
1/4

1/41/4

112(1 + ω−k
2m)

2(1 −ω−k
2m)

1
2 (1 + ωk

2m)

1
2 (1 −ωk

2m)

(a) (b)

(c) (d)

Figure 12. Using the basisβ = [(1, 1), (ω−k
2m ,−ω−k

2m)] we get weighted
graphs for (a) a generator forR+

=, (b) a recognizer forR−
=, (c) a generator

for R+
nand, and (d) a recognizer forR−

nand.

In our case, a torus is a surface with genus1, and the linear
combination takes on a very simple form. First, it is a well-
known fact that any graphG of genus1 we can draw on the
plane with no edges crossing, except for a set of horizontal
wrap-around edgesEH and vertical wrap-around edgesEV

which do cross5. See Figure 13 for a sketch.

G

EV

EH

Figure 13. A drawing of a graphG of genus1 on the plane with only the
horizontal wrap-around edgesEH crossing the vertical wrap-around edgesEV

It was shown in [32], that for any graphG there exists what
is called acrossing orientationof the edges such that

Pf(A) = ± ∑
M ∈ PM(G)

(−1)κ(M) ∏
e∈ M

w(e), (9)

where A is the skew-symmetric adjacency matrix ofG and
κ(M) is the number of crossings in the perfect matching

5In the general genusg case this is called aplane modelor a pasting map
(see [32] and references therein).

M. If not for (−1)κ(M), this would be the expression for
PerfMatch(G). Since the only possible crossings occur in the
wrap-around edges, for a perfect matchingM let hM denote
the number of horizontal wrap-around edges inM, and vM

the number of vertical wrap-around edges inM. Obviously,
the number of crossings inM is κ(M) = hMvM. We partition
all the perfect matchings according to the parity ofhM and
vM calling them(e, e), (e, o), (o, e), (o, o), wheree stands for
even, ando stands for odd, while the first entry is the parity
of hM.

The crossing orientation for a torus was shown in [32] to
take on a very simple form. We orient all the edges ofG except
for those inEH ∪ EV. This is always possible since no other
edges are crossing. Then we orient the edges ofEH as if EV

did not exist. Again this is possible sinceG − EV is planar.
To complete the orientation, we also orient the edges ofEV

as if EH did not exist. We call the resulting skew symmetric
adjacency matrixA1. By (9), Pf(A1) counts all the perfect
matchings with the correct sign except for those of type(o, o)
since that is the only case with an odd number of crossings.
We may now flip the signs of the weights onEH while keeping
the orientation (hence, keeping the same± as in (9)), and get
a matrix A2. If we just flip the signs of the weights onEV

we get A3. And finally, if we flip the signs of the weights
on both EH and EV we get A4. In Table I we see how the
different Pfaffians count the four types of perfect matchings
of the original graphG. It is easily seen now that

PerfMatch(G) =

= ±1

2
[Pf(A1) + Pf(A2) + Pf(A3)− Pf(A4)] .

TABLE I

THE SIGNS GIVEN TO PERFECT MATCHINGS OFG BY Pf(A1), . . . , Pf(A4)

type Pf(A1) Pf(A2) Pf(A3) Pf(A4)
(e, e) + + + +
(e, o) + + − −
(o, e) + − + −
(o, o) − + + −

It follows that each of theσk, 0 6 k 6 m − 1, may
be calculated up to a sign by a linear combination of four
Pfaffians. Moreover, we note that the Pfaffian orientation of
the graph is the same forG0, . . . , Gm−1 which correspond
to the networksN0, . . . , Nm−1. Thus, the± is the same for
all and the linear combination of4m Pfaffians will give us
∑m−1

k=0 σk up to a sign.

C. Algorithm Complexity

Our task is now to show that we can calculate the linear
combination of4m Pfaffians in time polynomial inn. We
choose the smallest possiblem, i.e., m = n2 + 1, and then we
have4(n2 + 1) Pfaffians of matrices of sizecn2 × cn2 where
c is the number of vertices in the basic block, a constant. Thus,
if we can show that we can calculate a Pfaffian of anℓ × ℓ
matrix in time polynomial inℓ, then we are done.
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There is, however, another complication we have to take
care of. The entries of our matrices are complex numbers
with infinite precision. We, on the other hand, may only
work with some fixed precision ofg binary digits before
and after the binary point, i.e., represent numbers which are
6 2g with absolute error6 2−g. Thus, to make sure our
algorithm is indeed polynomial inℓ, we will have to show
we can calculate the entries with precisiong in polynomial
time, run a polynomial time algorithm with fixed precision,
and then recover the correct result in spite of the initial error
of approximation and the accumulated error while running the
algorithm.

We start by describing the algorithm for calculating the
Pfaffian. There are several known polynomial-time algorithms,
but in order to easily bound the error we prefer to use a
division-free algorithm. Such algorithms are described in [28]
and [22]. We will use the algorithm by Rote [28] and describe
it for completeness.

Let Aℓ be anℓ× ℓ skew-symmetric matrix,ℓ even6, and of
the form,

Aℓ =





0 a r
−a 0 −sT

−rT s Aℓ−2



 ,

with Aℓ−2 being an(ℓ− 2)× (ℓ− 2) skew-symmetric matrix.
Let us also define theℓ× ℓ skew-symmetric “identity” matrix
Bℓ by

Bℓ
def
=























0 1
−1 0

0 1
−1 0

. ..
0 1
−1 0























.

Finally, given Aℓ we define the formal power seriesGAℓ
(λ)

as

GAℓ
(λ)

def
= − λ2 + a +

∞

∑
i=1

rBℓ−2(Aℓ−2Bℓ−2)
i−1sλ−2i.

Given these definitions, it was shown in [28] thatPf(Aℓ) is the
coefficient ofλ0 in the formal power seriesPAℓ

(λ), defined
recursively by

PAℓ
(λ)

def
= GAℓ

(λ) · PAℓ−2
(λ).

Several observations regarding this algorithm may be easily
made. We use very loose bounds which are good enough
to show that the algorithm is indeed polynomial with the
desired accuracy, while allowing a very simple analysis. We
have to find the coefficients of the terms inℓ/2 power
seriesGAℓ

, GAℓ−2
, . . . , GA2

, and in each of those it suffices
to compute the coefficients of the terms up to that ofλ−ℓ.
Hence, we need to computeℓ2/4 coefficients of the form
rB j(A jB j)

is. Each of this is made up of a product of up to
ℓ/2 + 3 6 ℓ (for ℓ > 6) matrices of size at mostℓ × ℓ. We

6We note that the restriction to evenℓ does not hurt us since our graphs will
always have an even number of vertices or else no perfect matching exists.

can use a simple tree for finding the product: in the first round
we partition theℓ matrices into pairs and take their product.
In the second round we take the resultingℓ/2 matrices and
repeat the process, and so on. In each round we use the results
from the previous round, and in total we have at most⌈log2 ℓ⌉
rounds.

In the next stage, after computing all the coefficients we
need to convolve them to compute the coefficient ofλ0 in
PAℓ

. This, again, may be implemented by taking the product
of at most ℓ matrices of size at mostℓ2 × ℓ2 in ⌈log2 ℓ⌉
rounds as we did in the previous stage. The matrices simply
hold the coefficients in staggered rows padded with zeroes,
to simulate the convolution. This process is then repeated for
each of the Pfaffians and the resulting numbers summed, and
since the number of Pfaffians required in our case is alsoO(ℓ)
we have a polynomial time algorithm.

In summary, we need to compute the linear combination
of c′ℓ Pfaffians, c′ a constant, where for each Pfaffian we
take the product of matrices of size at mostℓ2 × ℓ2 in at
most 2 ⌈log2 ℓ⌉ rounds. It remains for us to prove that we
can do so with fixed precision arithmetic using a polynomial
number of digits. As mentioned before, let us work with some
fixed precision ofg binary digits before and after the binary
point, i.e., represent numbers which are6 2g with absolute
error6 2−g. If we show that for someg which is polynomial
in ℓ we can still recover the wanted result despite the errors
introduced along the way, then we are done.

We now follow a similar line of reasoning used by Valiant
in [36], which we bring here for completeness, and adapt it
to our case. LetY ⊂ C denote the set of all values appearing
as entries in the initial matrices whose Pfaffians we want
to compute. DefineD

def
= max {|y| | y∈Y}. We note that

because of the edges between matchgates with weight1, we
have D > 1. We now run the above mentioned algorithm
with a fixed precision ofg binary digits before and after the
binary point, resulting in absolute error of at most2−g in each
roundoff operation.

We need to bound both the largest modulus of any entry in
the matrices used during the algorithm, as well as the resulting
maximal absolute error. Before we do that, letFi denote an
upper bound on the largest modulus of any value computed
in the i-th round of theexact algorithm, i.e., with infinite
precision. ObviouslyF0 = D and we can useFi > F2

i−1ℓ
2

since we are taking the product of twoℓ2 × ℓ2 matrices
with entries with maximal modulusFi−1. Certainly taking
Fi = (Dℓ2)2i

gives an upper bound which is strong enough
for our needs. We note thatFi > 1 necessarily.

Now let ǫi denote an upper bound on the absolute error in
the modulus of any entry ini-th round of thefixed precision
algorithm, which is caused by the roundoff operations. We can
takeǫ0 = 2−g, and we will make sure that2−g 6 ǫi 6 1

4c′ℓ ,
where we remind thatc′ℓ is the number of Pfaffians in the
linear combination. This contention will be kept throughout
the computation by noting thatǫi 6 ǫi+1 and by bounding
the error in the last round by choosing a suitable precisiong.

Let U and V denote the modulus of two entries afteri −
1 rounds in theexact algorithm. Then in thefixed precision
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algorithm, the maximal error in modulus when multiplying the
corresponding values is bounded by taking

(U +ǫi−1)(V +ǫi−1) + 2−g − UV

= (U + V)ǫi−1 +ǫ2
i−1 + 2−g

6 2Fi−1ǫi−1 +ǫ2
i−1 + 2−g def

= ǫ′.

Thus, afterℓ2 summations (which incur an added2−g error)
we get the maximal absolute error in the modulus of an entry
after thei-th round to be at mostℓ2(ǫ′ + 2−g), i.e.,

ǫi
def
= ℓ2(2Fi−1ǫi−1 +ǫ2

i−1 + 2 · 2−g)

6 5ℓ2Fi−1ǫi−1 6 (5ℓ2)iFi−1Fi−2 . . . F0ǫ0

6 (5ℓ2)i(Dℓ2)2i
2−g

where we used the fact thatǫ2
i−1 6 Fi−1ǫi−1 and 2−g 6

ǫi−1 6 Fi−1ǫi−1.
Since we are interested in2 log2 ℓ + O(1) rounds, then for

g = O(ℓ2)(log2 D + log2 ℓ) binary places after the binary
point, the absolute error in modulus in any of the entries is
small, ǫi 6 1

4c′ℓ . Furthermore, since no entry is larger in

magnitude thanFi = (Dℓ2)2i
, then g = O(ℓ2)(log2 D +

log2 ℓ) binary places to the left of the binary point will suffice
as well. It now follows that the sum ofc′ℓ Pfaffians, each
computed to within an absolute error of14c′ℓ , has an absolute
error of magnitude at most14 . Since we know the sum of the
Pfaffians should be an integer, we can easily round the result
to the nearest one and get the correct value.

Finally, we have to consider whether we can compute the
entries of the initial matrices, whose Pfaffians we want to
compute, tog digits of precision in polynomial time. The
entries which contain integer constants or even rational num-
bers, are obviously easy to compute to within a polynomial
number of binary digits in polynomial time. The slightly
more complicated case is that of the entries which contain
sin(2πk/m) and cos(2πk/m). The constantπ is easily
computed to within a polynomial number of digits using, for
example, the BBP algorithm [1]. Thensin(2πk/m) may be
computed using a simple Maclaurin series, only we have to
consider two sources for error: the error in the approximation
of π , and the error caused by computing only the firstn terms
in the series.

Let 0 < x = 2πk/m < 2π , and let us examinesin(x + δ)
whereδ is a function of the absolute error introduced by the
computation ofπ .

sin(x + δ) = (x + δ) − (x + δ)3

3!
+

(x + δ)5

5!
+ · · · ± Rn,

where

|Rn| 6
(x + δ)n

n!
.

We can assume|δ| 6 x and so by the Stirling approximation,
for n > 4πe we have|Rn| = 2−Ω(n). Now,

(x + δ)i

i!
6

xi

i!
+

∣

∣

∣

∣

2ixi−1δ

i!

∣

∣

∣

∣

since|δ| 6 x. Thus, the absolute errorǫ in computingsin(x)
is at most

ǫ = 2−Ω(n) + 2 |δ| ∑
i=1,3,5,...

(2x)i−1

i!

6 2−Ω(n) + 2 |δ|
∞

∑
i=1

(4π)i−1

(i − 1)!

= 2−Ω(n) + 2 |δ| e4π

but sinceδ may be made exponentially small in polynomial
time, so isǫ. A similar analysis applies tocos(2πk/m) as
well.

V. CONCLUSION AND OPEN PROBLEMS

We presented a general method that enables the calculation
of the exact capacity of some two-dimensional constrained
systems, as well as a polynomial-time algorithm for counting
the exact number of constrained arrays in the system. The
method uses a series of reductions, from a given constrained
system to a network of relations and then to a weighted graph.
It is the theory of spectral distribution of Toeplitz matrices that
allows us to find the limit of the determinant of the modified
adjacency matrix of that weighted graph and in turn yields the
capacity of the system.

While we were able to rigorously compute the exact capac-
ity of the Path-Cover constraint in a two-dimensional system,
sadly, we have not been able thus far to come up with an exact
and rigorous closed-form solution to the hard-square entropy
constant, i.e., the capacity of the two-dimensional(1, ∞)-
RLL constraint. This raises the key open question: What is
the expressive power of our proposed method?

While performing the reductions associated with the pro-
posed method, one may “get stuck” at two different stages: (i)
not being able to find a basis for the holographic reduction,
or (ii) getting a modified adjacency matrix with eigenvalues
not bounded away from0. Without knowing the expressive
power of this method we do not know whether we reached a
dead end, or simply took the wrong path in fixing some of the
many degrees of freedom the method offers. Those degrees of
freedom generate some more open problems:

• Is there a systematic or best way of reducing a constrained
system to a network of relations (perhaps generalized
relations)? The wrong reduction may lead to a dead end
in any of the next stages of the reduction.

• Given a certain basis, what are the sets of matchgates that
are realizable together?

• Can we generalize holographic reductions to non-binary
alphabets? This would perhaps enable us to create planar
networks of relations for “wider” constraints such as
the currently binary non-planar no-isolated-bit and the
general(d, k)-RLL constraints.

• How do we choose generators, recognizers, or transduc-
ers? Can we break down relations on a large number
of variables, to smaller relations (perhaps creating gen-
erator/recognizer conflicts)? For example, the4-cycles in
Figure 11 are essentially emulating a transducer match-
gate with 2 inputs and2 outputs. Replacing it with a
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single equality matchgate which is either a generator or a
recognizer eliminates all possible bases for a holographic
reduction.

We trust and hope that these interesting open problems will
be the subject of future research.
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