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Abstract— We address the well-known problem of determining constraints forbid certain patterns in the arrays, such as the no-
the capacity of constrained coding systems. While the one-jsplated-bit constraint in which every bit agrees with at least

dimensional case is well understood to the extent that there

are techniques for rigorously deriving the exact capacity,in

contrast, computing the exact capacity of a two-dimensiora

constrained coding system is still an elusive research chahge.
The only known exception in the two-dimensional case is an axt
(however, not rigorous) solution to the(1, co)-RLL system on the
hexagonal lattice. Furthermore, only exponential-time ajorithms
are known for the related problem of counting the exact numbe
of constrained two-dimensional information arrays.

We present the first known rigorous technique that yields an

exact capacity of a two-dimensional constrained coding stem.
In addition, we devise an efficient (polynomial time) algorihm

one of its four neighbors in the two-dimensional array.

An important measure associated with a constrained system
is its capacity Introduced by Shannon [30], the capacity of a
constrained syster§§ is defined as

cap(8) =’

While the capacity of one-dimensional constraints is well
understood, amazingly, there is still very little known about
the capacity of two-dimensional systems.
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for counting the exact number of constrained arrays of any
given size. Our approach is a composition of a number of ideas
and techniques: describing the capacity problem as a soluin
to a counting problem in networks of relations, graph-theoetic
tools originally developed in the field of statistical mechaics,
techniques for efficiently simulating quantum circuits, as well
as ideas from the theory related to the spectral distribution of
Toeplitz matrices.

Using our technique we derive a closed form solution to
the capacity related to the Path-Cover constraint in a two-
dimensional triangular array (the resulting calculated capacity is
0.72399217 ...). Path-Cover is a generalization of the well known
one-dimensional(0, 1)-RLL constraint for which the capacity is
known to be 0.69424 . ..

Index Terms— capacity of constrained systems, capacity of
two-dimensional constrained systems, holographic reduidns,
networks of relations, FKT method, spectral distribution of
Toeplitz matrices

In the case of two-dimensiondli, k)-RLL systems, Ito et
al. [16] characterized the values df and k for which the
capacity is zero. General bounds on the capacity/pf)-RLL
were given by Kato and Zeger [19], constructive lower bounds
for (d, 00)-RLL by Halevy et al. [15], and non-constructive
asymptotically-tight bounds fof0, k)-RLL by Schwartz and
Vardy [29]. For the specific case ¢1, co)-RLL, Calkin and
Wilf [6] gave a numerical estimation method for the capacity
using the transfer matrix method. Only for tli&, co)-RLL
constraint on the hexagonal lattice, Baxter [3] gave an exact
but not rigorous analytical solution for the capacity using the
corner transfer matrix method.

Other two-dimensional constraints do not fare any better.
Several estimates for the capacity of the two-dimensional no-
isolated-bit constraint exist. Halevy et al. [15] considered bit
stuffing encoders to constructively estimate this capacity. Non-
constructively, Forchhammer and Laursen [12], estimated this
capacity using random fields.

HILE most storage devices record information on The method we present in this work is general enough

a two-dimensional surface, they emulate a ond0 encompass a wide variety of constraints (both local and

dimensional environment by spacing tracks or recorded da%‘?bal)’ however, its expressive power is yet undetermined. We

The distance between adjacent tracks in common devices isUafT onIymathematlcally-rlgoro_uﬂ;ools to _obtam ex‘."lCt capac-
tsolutlons and polynomial-time algorithms, while pointing

order of magnitude larger than the distance between adjac ) .
Ayt places where non-rigorous practices were common. The

symbols along the track. The next big leap in storage dens hod is based . f reductions:
may be achieved by reducing the distance between tracks. thod Is based on a series of reductions:

in turn, requires a two-dimensional constrained-coding schemel) A constrained system is first reduced to a network of

to be employed. relations in a way which enables us to connect the
A two-dimensional constrained systefy ,, is simply a set number of satisfying assignments to the network with

of n x m arrays over some specified alphabet. The common the nqmber of constrained arrays. Though this is usually

example of such a system is th& k)-RLL constraint in which done in a one-to-one manner, it is not mandated.

each row and each column of the array has runs of zeroe<) This network of relations is transformed to a weighted

whose length is at leagtand at most. Other two-dimensional graph using holographic reductions in such a way that
the number of satisfying assignments to the network

equals the weighted perfect matching of the graph. This
is a many-to-many reduction in which the individual
perfect matchings do not correspond in any one-to-one
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way to satisfying assignments, and the “interference”
and cancellations between different matchings is the
reason for the nambolographicreductions.

3) Finally, the weighted perfect matching of the graph is
expressed as a Pfaffian (or a linear combination of Pfaf-
fians) of a certain skew-symmetric matrix, completing
the series of reductions. Using the theory of spectral
distribution of Toeplitz matrices, a limit involving the
Pfaffian gives a closed form solution for the capacity.
The Pfaffian itself also provides a polynomial-time al-
gorithm for counting the exact number of constrained _ _

. . Figurel. A simple network of relations
arrays of any given size.

The paper is written with the goal of explaining our new
method in a self-contained manner. We start by providing
the background needed for the three key steps in Section II,
starting with networks of relations, going through holographic
reductions, and ending with the Fisher-Kasteleyn-Temperley
(FKT) method. In Section 1l we apply this background
to an example constrained coding system and demonstrate
how to derive its exact capacity using the theory of spectral 1
distribution of Toeplitz matrices. We continue in Section IV
by presenting a polynomial-time algorithm for counting the
number of constrained arrays while taking the opportunity
to mtro.duce two generalizations .t0 the methOd mvolvmgi ure2. The weighted graph corresponding to the network of relations
constraints on a torus and generalized relations. We conclq,g)gen Figure 1
in Section V with a summary of the results and a list of open
guestions.

which is described in Section II-C. Loosely speaking, the
adjacency matrix of the graph is modified by changing the

IIl. BACKGROUND AND DESCRIPTION OF THENEW signs of the entries to make it skew-symmetric:

TECHNIQUE

The background we are about to provide is described in a
relatively self-contained manner, and is therefore quite lengthy.

It is divided into three sub-sections, for which the following
tiny example is an appetizer and also serves as a table of
contents.

Suppose we are given a graph whose edges may be assigned
either a0 or a1. Only not any assignment is possible: every
vertex implements a local constraints on the values assigned
to edges incident to it. Such graphs are calfetworks of
relationsand are described in Section II-A. In Figure 1 we se€he weighted perfect matching is then the Pfaffian of the
a simple network whose three outer vertices are satisfied wittodified matrix, which is (up to a sign) the square root of
any assignment to their single incident edge, while the middlee determinant of the matrix. As if by magic, we again get
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vertex forbids all three incident edges to be assigned the same
value. Obviously, the number shtisfying assignments this IPf(A)| = y/det(A) =6
example is6.

Counting the number of satisfying assignments seems to be
difficult when stated this way. But we can reduce this problem )
to a problem of finding the weighted perfect matching df- Networks of Relations
some other graph. This is done usihglographic reductions  We start our journey by introducing networks of relations.
which are described in Section II-B. For this tiny example, thEhose were used in the context of relational databases and
resulting weighted graph is shown in Figure 2. The weightesbnstraint-satisfaction problems, see for example [14], [8],
perfect matching of the graph, which is the sum over g@]. For more on the subject the reader is referred to [7] and
perfect matchings of the product of the weights of edges in theferences therein.
perfect matching, is indee6l, as is the number of satisfying Given some ground se, a relation on n variablesis
assignments to the original network of relations. a subsetR C Q". As will be apparent later on, by abuse
Finally, the weighted perfect matching of the graph is cabf notation we will also consider a relation to be a function
culated using thdrisher-Kasteleyn-Temperley (FKT) methodR : Q" — {0,1} which is simply the characteristic function



associated with the subsBt We also define thsignatureof
the relation to be the column vector

R(0,...,0,0)
R(0,...,0,1)
R(0,...,1,0)
sig(R)d:ef R(0,...,1,1)
R(1,...,1,0)
R(1,...,1,1)

A network of relationsis a graphG = (V,E) where we
associate with each vertexe V a relationR, on deg(v)
variables being the ordered set of incident edgesvoiVe
can now assign every edges E a value fromQ and check
whether all the relations are satisfied. For every such assign-
ment of values to edged : E — Q, every vertexo €V, and  Figure3. The network of relations of Example 1
edges incident o denotedey, ... +Cdeg(v), We defineA, to
be

A, def (A(el)/~~-/A(€deg(v))) . B. Holographic Reductions

Holographic reductions were introduced by Valiant in [36]

We say that assignmem is a satisfying assignmerif for and [37] to show certain counting problems may be solved
everyov € V, the relationR, is satisfied, i.e.A, € R,. If we in polynomial time. In a slightly different version they were
denoteE = (el,...,em), we will usually specifyA by the introduced also by Valiant [35] to simulate quantum circuits
vector of assignments tq throughe‘E‘. Throughout the paper efficiently in polynomial time. Though the notion of networks

we will be interested in counting the number of satisfyingf relations does not appear as such in his work, Valiant shows
assignments to networks of relations. a many-to-many reduction from such networks to weighted

graphs. This reduction preserves the total number of solutions,

Example 1. Let us take as a running example the network gf., the number of satisfying assignments to the original
relations shown in Figur8. We use the ground sét = {0,1}, network of relations equals the weighted perfect matching
defineR .. to be thenot-all-equal relatioron three variables, of the resulting graph. The reduction itself is realized by
and¢-. to be theaccept-allrelation on one variable: replacing each of the vertices of the original network with a
small gadget. In what follows we will describe this reduction

X X X |R in practical terms. For a rigorous treatment of the method the
0 0 00 reader is encouraged to read [36].
0 0 111 Let G = (V,E) be a graph. Aperfect matchings a subset
0 1 011 X | ¢y of edgesM C E such that every vertex € V is incident to
0 1 111 011 exactly one of the edges . The set of all perfect matchings
10 071 1]1 will be denoted®M(G). We can now assign complex weights
10 171 to the edgesw : E — C, and define theneighted perfect
11 01 matchingof G to be
1 1 1] 0 o

e

We can easily see that there are exat@ydistinct satisfying PerfMatch(G) Me (G ec (€)

assignments to this network which we list below: o ) ) .
Our aim is to replace vertices in the network of relations,

A€{(0,0,1,0,0),(0,0,1,0,1),(0,0,1,1,0), with gadgets which somehow capture the original relatipns.
(0,1,0,0,1),(0,1,0,1,0), (0,1,0,1,1), The gadgets are calle@atchgatgsand_ thg resulting graph is
11 called amatchgrid At this point, just like in [36], we require
(0,1,1,0,0),(0,1,1,0,1),(0,1,1,1,0), the graphG to be planar as well as all the matchgates we
(1,0,0,0,1),(1,0,0,1,0),(1,0,0,1,1), use, resulting in a planar matchgrid graph. This is perhaps
(1,0,1,0,0),(1,0,1,0,1),(1,0,1,1,0), the most restrictive requirement we face during the process.
(1,1,0,0,1),(1,1,0,1,0),(1,1,0,1,1)}. We are, however, able to use non-planar graphs, though at a

cost of increased computational complexity. Such a non-planar

If we wanted to be completely accurate, we should havgatchgrid will be introduced in Section IV. For now, however,
included a numbering of the incident edges to each vertex'¥ assume all graphs are planar.
Figure 3. _Howgv_er, since all the relations in this example are 2Throughout the paper we use complex weights, though the meimita
symmetric, this is unnecessary. 0 equally well to other fields.



A matchgate is defined as a graph= (V,E, X,Y) with
vertex setl/, edge seE, a set of input nodeX C V, and a set
of output noded” C V, whereX andY are disjoint andX| +
|Y| equals the number of variables in the original relation.
For convenience, we can think &f and Y as drawn on the
outer face of the graph. The edges in the network of relations
are copied to the matchgrid with weight and are placed so
as to connect input vertices of gadgets with output vertices
of gadgets such that every input/output vertex is incident to
exactly one of those edges.

The interaction of the matchgate with the outside world,
i.e., the matchgrid, which should encapsulate the original
relation, is given by 2/XI x 2/¥| matrix, called thesignature
of the matchgate, in the following manner: for each possibfgure4. The matchgate of Example 2
Z C X UY there is an entry containinBerfMatch(G — Z).

This is meant to simulate all possible ways of a global perfect

matching interacting with the matchgate, where the sulisetexact same signature only as a row vector.

depends on whether edges between matchgates are chosenfiet us examine a few of the entries in the signature. For
be part of the global perfect matching. Such chosen edgee entry indexed by1,1,0) we haveZ = {vq,v,} which
already cover some of the interfacing input/output verticessmulates a global perfect matching which already cowvers

of the matchgate, and so these are removed ferand a andv,, soG — Z contains only two surviving vertices which
perfect matching of the remaining uncovered vertice&iis  arevs and the inner vertex. ThuBerfMatch(G — Z) = wg
calculated. For convenience, we index the rows and columbscause there is exactly one perfect matching coverirand

by binary vectors in the obvious way, where for example fahe inner vertex, and it contains just the edge with weight

the rows, (0,...,0,0) means no input vertex was removed For the entry indexed by0,0,0) we haveZ = () and it
(i.e., no input vertex is inZ), (0,...,0,1) means the last follows that there are three different perfect matchings covering
input vertex was removed, up td,...,1,1) which means the four vertices ofs — Z. For each perfect matching we take
all input vertices were removed. the product of the weights of its edges, and sum over all perfect

Matchgates with only input vertices are calletognizers matchings to gePerfMatch(G — Z) = wyws + wowe +
those with only output vertices are callggnerators and  5w,.
those with both are calledransducers The examples we  Finally, for the entry indexed b§p,0,1) we haveZ = {v3}
show in this paper will only use recognizers and generatogng soG — Z contains three surviving vertices. Obviously,
This ObViOUSIy restricts our networks of relations to be bit‘here is no perfect matching in a graph with an odd number

partite since we may only connect inputs with outputs. Thigf vertices and thus this entry(s as are the entries indexed by
however, is not a severe restriction since most useful networls 1,0), (1,0,0), and(1,1,1). 0

are bi-partite by their nature, and when they are not, we

could add auxiliary vertices on the edges (equality on two Now, if only we could get matchgates with signatures which
variables) to make them bi-partite. By definition, the signatuggual the signatures of the relations we aim to replace, then
of a recognizer is a column vector, while the signature of @ur work would be done. However, by Example 2, it is clearly
generator is a row vector. seen that entries with an index of odd (even) weight are forced

Example 2. The recognizer matchgate seen in Figéreon- to be0 if the matchgate has an even (odd) number of vertices.

tains four vertices and six edges. Three of the vertices (depicl‘é ortunately for us, a quick glance at the signature of a

as white circles) are input vertices and lie on the outer face'Gfaton such as the not-all-equal relation on three variables

the graph. The shaded area is just used to show the outer faceq 1N Example 1 reveals that it contains non-zero entries

the graph and has no mathematical meaning to it. The signat'ur?eboth .odd—welght and even-weight |nd|c_e s. To extend the
of the matchgate is the following column vector: expressive power of matchgates we now introduce a change

(%) wo (%1

ws Wy

w3 w1

U3

of basis.

index signature Without knowing it, all our examples thus far used the
(0,0,0) W1Ws5 + Wrle + W3Wy standard basis. Abasis is an ordered set of vectors. In
(0,0,1) 0 what follows we will restrict ourselves to bases made up of
(0,1,0) 0 two vectors of lengtl2 which are also linearly independent.
(0,1,1) Wy : It should be noted though, that in the general case those
(1,0,0) 0 restrictions are unnecessary, and a basis should not be confused
(1,0,1) ws with the linear-algebra notion of a basis. Tétandard basiss
(1,1,0) We defined adb = [(1,0), (0, 1)]. We will always denote the first
(1,1,1) 0 vector in the basis as which will play the role of a “logical”

At this point we note that had we said the matchgate wlsand the second vector aswhich will be a “logical” 1.
a generator instead of a recognizer, we would have gotten théet B = [n,p] = [(no,n1), (po, p1)] be some basis. We



define thebasis translation matrivas We also want a recognizer f&, and using(2),

def (ngp np 3/4 0
T = (Po P1) ) 0 1
0 1
Let I' be some matchgate with input/output vertices. Using T®3 . —1/4 = 1
this matrix we can define the signature Ibfunder the basis p 0 1
B, which we denote asig,(T"), using two different equations —1/4 1
depending on whether the matchgate is a generator or a —1/4 1
recognizer: 0 0
we again see all the non-zero values move to even-weight
sigﬁ(r) . Tg’” = sigy () for I' a generator (1) indices. We can now choose weights for the matchgate:
Tg" - sigy(I) = sigg(T) for I arecognizer (2) =1 and  ws = ws — we — 1

i
It is interesting to note that using this Hadamard basis we get
signatures that contain the Walsh transform of the signatures of
the original relations (up to a missing normalizing factor).

" The weighted graphs for the generator matchgat® foand

the recognizer matchgate fBr, are shown in Figuré. O

where x@n%<fx ® ---® X is n times the Kronecker product.

We can also query the value of individual entriesigB(F)
using thevalG andvalR operators for generators and recog
nizers respectively. Given somee {n,p}®n, we associate
with it an index vector by substituting for n and 1 for p.
For example, withn ® p ® n we associate the index vector
(0,1,0). We now definevalGg(T',x) to be the entry in
sigﬁ(l“) with the index associated withk. By (1) this is
simply the coefficient ofr in the linear combination making
up sigy, (). Similarly, valRg(T", x) is defined as the entry in
sigz () with the index associated with By (2) this is simply
the dot productr - sigy (T).

Example 3. Returning to our running example we shall build
a generator matchgate f8r, and also a recognizer matchgate
for R... We have already noted that using the standard basis (a) (b)
will not work in this case since the signature ®%. has non- . _ .
zero entries in both odd-weight and even-weight indices. ~ FigureS. Using the basig = [(1,1), (1, —1)] we get weighted graphs for
. . ] (a) a generator foR, and (b) a recognizer foR ..

We will choose a basig and setsigg(T") to be equal to
the Signature of the relation we want to replace. We will then Fina”y, we zoom out to examine the entire matchgrid_ Let
calculatesigy, (T') using (1) or (2) (depending on whether we A be some matchgrid made up ofecognizersds, ..., A,,
want a generator or a recognizer) and hope that all the non-zgfg g generatorsBy, ..., By, and let it contain a total of
entries fall in either the even-weight indices, or the Odd-Weigeénnecting edges between the matchgates. We can think of

indices. each edge as carrying a value frgdn= [n, p], and so each
We choose a basis which works well for self-dual relationsossible assignment to edges is of the farm 3%/ . By abuse
(as isR) which is of notation, letvalRg(A;, x) andvalGg(B;, x) stand for the
normal valR and valG operators when we restriat to the

B=Inp]l=1[(1,1),(1,-1)]. (3) edges incident tA; or B; appropriately. We define a global

property of the matchgrid called théolant,
We notice thal'$" is a Hadamard matrix. We start by building

def
a generator foR .. Substituting the values i1) we get Holant(M) =
(0,1,1,1,1,1,1,0)- T§® = (6,0,0, 2,0, ~2,2,0). > ( [ ValGB(Bjrx>> ( [1 ValRﬁ(Ai’x)>‘
xeﬁxf 1<j<g 1<i<r

Indeed, as seen on the right, all the non-zero entries are inVe now have all the necessary definitions in place to state
even-weight indices. Choosing values for, ..., wg So that the main result of Valiant [36]:

the matchgate of Examprealizes this signature is easy:  Theorem 4.For any matchgrid\l over any basig, if M has
weighted graplé then
Holant(M) = PerfMatch(G).

There is more than one solution to this under-constrained set o¥Vhile the connections between matchgrids and perfect
equations, but any solution will do. matchings have been evident throughout this section, the

W, =wy =wz =—1 and Wy = W5 = We = —2.



connection to satisfying assignments for networks of relatio@ The FKT Method
is a little more subtle. Given a matchgrid built using this

method. we can view edaes between matchaates as carr .nUnIess weighted perfect matchings are easier to handle,
: ; 9 . gate M reduction described in the previous section is useless.
values from the basig = [n, p], which we can think of as

“Jogical” 0 and “logical” 1. The operatorsralG andvalR in Fortunately for us, the FKT method gives a simple expression

. : : . for the weighted perfect matching of certain graphs which
this b§15|s, query .the signatures of thg 'matchgaFes[G)wmlch is also computable efficiently. The method was developed
are simply the signatures of the original relations. Thus, the

Holant goes over all possible assignments of “logi@’and independently and concurrently by Fisher and Temperley [31],

1's to the edges between matchgates (which are the e dge%lgﬁ’ and by Kasteleyn [17]. The motivation for their work was

the original network of relations), and queries the signaturﬁ(:s ind an alternative solution to the Ising problem, simpler

of the relations for that assignment getting a value of eithero" the original solution given by Onsager [26]. The solution

0 or 1 for being unsatisfied or satisfied respectively. Since waore commonly used today and the one we describe in this

take the product ofralG andvalR, only if all relations are work, is QUe o the ge_n_eral method de\(eloped.by Kasteleyn in
. - .~ [17] and in more detail in [18]. It is also interesting to note that
satisfied we get a contribution dfto the sum, thus counting . . .
L ) very simple gadgets were employed in some occasions [11],
exactly the satisfying assignments.

On the other hand, Theorem 4 is invariant under a chan\[w?zl without reaching the general treatment given by Valiant

o . . ich we described in the previous section.
of bases, and it is the different handling of generators an Let G b h with weiaht the ed dAet
recognizers which makes this possible. Thus, if we choo € € a graph with Weights on the edges, an

e : . : . )
to view the same matchgrid using the standard basis, th@']’) be itsn x n adjacency matrix where; ; is the weight

by definition, valG and valR depend on the perfect match- the edge petween verticésa_nd j. Since we are interested
ings of the graph. This establishes a connection betwe'gngraphS with perfect maichings we assumes even. A

PerfMatch(G) and the number of satisfying assignments t erfect matching can obviously be described by the unordered

the original network of relations. For the rigorous proof opartition 7 of the numberg{1,2, ..., n} into _pa|rs,lwh|ch we
Theorem 4 the reader is referred to [36]. .defnﬁte by‘hplm | p3pal .- [ puipn | . Using this notation
it follows that

Example 5. We complete the matchgrid for the network of
relations of Examplel. From Example3, under the basis PerfMatch(G) =3 ap,,p,aps,ps - - Ap, 1,00
B = [(1,1),(1,—1)] we already have a generator matchgate T

for R, and a recognizer matchgate fBr.. The remaining wherer goes over all such unordered partitions. Since we only
relation is ¢, but we note that we need both a generat@pnsider unordered partitions, we select for each partition a
and a recognizer for it. The resulting matchgrid is shown ganonical representation in whigh < p,, p3 < p4, up until
Figure 6. The skeptical reader is encouraged to verify that tiﬁ _1 < pn, as well asp; < p3 < --- < py_1. Using this
weighted perfect matching of this graph is inddéd as is the convention we note that we only use the entries strictly above
total number of satisfying assignments to the original netwogke main diagonal of the matrix.

of relations. O This expression seems very similar to another expression

known as the Pfaffian which is defined as
def
Pf(A) == Z Sgn(ﬂ)apl,pzap3/p4 - apnil,pn
7T

where againzt goes over all the canonical partitions and
sgn(7) is the sign ofr when considered as the permutation
sendingi — p;. This in itself is again reminiscent of the
more widely used determinant. Indeed, since we only use the
entries above the main diagonal, if we completeso as to
make it skew-symmetric, that i§ ; = —a;;, then we get the
well-known identity

[P£(A)]* = det(A).

Thus, the Pfaffian of a skew-symmetric matrix is easily
computed up to its sign by taking the square root of the
determinant.

Returning to our problem of calculating the weighted perfect
matching, we are faced with the problem caused by the added
sgn(7r) in the expression for the Pfaffian. This causes some
of the perfect matchings to be counted with the wrong sign. It
Figure6. The matchgrid for the network of relations from Example 1 \yas the ingenious solution of Kasteleyn [17] to flip the signs
of some of the entries of the original matrk to compensate




for sgn(7r) and make the Pfaffian count all the original perfedExample 6. For the last part of our running example we orient

matchings with the same sigin the edges of the graph to create a Pfaffian orientation. The
An orientation of the an undirected grap@ is simply an resulting oriented graph is shown in Figutelf we write down

assignment of a direction to each of the edges of the graph. Tthe modified adjacency matrix for the graph (after fixing some

solution given by Kasteleyn [17] requires a special orientaticarbitrary ordering of the vertices) we get:

which we will now describe. LeiM and M’ be two perfect

. . . 0 -11 -1 0 0 000 -10 00000
matchings in the grapli;, and let® denote the symmetric o 1-1 0 0 000 0 0 10000
difference operation between sets. Thehd M’ is a set of 1o K L0 000 0 0 000 0 0
cycles of even length i If we traverse any of those cycles 11 o 0 0 000 0 0 00000
in some direction, then some of the edges will be oriented in 000 1 0 0 112000 00000
agreement with our traversal direction, and some will not. A 00 0 0 1 0 -120 0 0 00100
Pfaffian orientatiorof a graphG is an orientation such that for 0000 0 -11 020 0 0 00001
eachM and M’, any cycle inM & M’ has an odd numberof 4 _ | © 0 0 0 —2-2-200 0 0 00000
edges oriented in agreement with the traversal direction. Note 60 0 0 00 000 20 00000
that since the cycles are always of even length, the traversal (1) g 2 g 2 g 2 2 ’02 s 2 Z Z g 2 2
direction does not change the parity of the number of edges

. h . 0o 1 0 0 o 0 00O O -2 00000
agre.elng wit _It' . . ) ) 0o 0 0 0 o 0 00O O O O O0O-10 0

Given awe!ghted grgpﬁ?, and a Pfafflanlorler)tatlon of its _ 0 0 0 0 0 1000 0 0 01000
edges, we build a modified skew-symmetric adjacency matrix 000 0 0 0 0 000 0 0 00001
A= (al-,]-) as follows: 000 0 0 0 0 -100 0 0 00010

0 no edge betweehand j Again, the skeptical reader will find out that

o N TN
aij = wleiy) i IPE(A)| = \/det(A) = 18
—w(ei,]-) if j—i

which is both the weighted perfect matching of the graph and
the total number of satisfying assignments to the network of

d

wherei — j denotes the edge between vertigeand j is
oriented fromi to j. Note thatA is not the adjacency matrix )
of the graphG in the usual sense. Using this constructiof€/ations.
Kasteleyn [17] showed that

PerfMatch(G) = + Pf(A)

where, using the Pfaffian orientation, either all perfect match-
ings are counted with a positive sign or all with a negative
sign, depending on the chosen Pfaffian orientation only. Since
in most cases we know the sign of the outcome, this unknown
degree of freedom may be easily fixed.
It now remains a matter of finding out which graphs allow a
Pfaffian orientation. Such graphs are calidffian orientable
In his later work, Kasteleyn [18] showed that all planar
graphs are Pfaffian orientable, which is the reason we required
matchgrids to be planar in the previous section. For planar
graphs, it was shown in [18], that if we orient the edges such
that every clockwise walk on a face of the graph has an odd
number of edges agreeing, then that orientation is a Pfaffian
orientation. As a result, a simple polynomial time algorithm
which finds such an orientation was also shown by Kasteleyn.
For further reading on generalized dimer problems with
boundary conditions the reader is referred to the excellent
survey in [20] (and references therein). Planar graphs are not
the only Pfaffian orientable graphs. More results on PfaffiaRigure 7. The matchgrid for the network of relations from Example 1 with
orientable graphs are given by the survey in [33], and the wa#Kfaffian orientation of the edges
in [25]. Advances in Pfaffians and perfect matchings may be
found in [21]. Pfaffian orientations are also used to efficiently

calculate some permanents, see [38], [27]. I1l. EXACT CALCULATION OF THE CAPACITY OF THE

3The reader may notice at this point tHBérfMatch(G) is simply the PATH-COVER CONSTRAINED SYSTEM

Hafnian of the matrix4, i.e., the Pfaffian withoutgn (). In fact, the Hafnian In this section we address a specific two-dimensional con-
is to the Pfaffian as the permanent is to the determinant. Memvéoth the

Hafnian and the permanent are notoriously hard to handle aridisevorth Strain?d coding SyStem and C_IemonStrate_hOW to apply qur new
the trouble to work with the Pfaffian and correct the sign pecis. technique (described in Section II) to derive an expression for




its exact capacity. The derivation consists of the following I I 1

steps: 1 Jo 1 o l1 o I

Definition of the constrained system. J !
Reduction to a network of relations.

Holographic reduction to a matchgrid.

Pfaffian orientation of the graph.

Derivation of a Closed form expression for the exact

capacity.

0 1
DUNNEES GRS r
A. The Path-Cover Constrained System '/oL 1

Most constrained systems are easily defined by a finite
set of forbidden patterns. For example, the-isolated-bit (c)
,Consnamtforblds a bit to be surrounded on a", four S"?'es b¥igure8. The forbidden patterns of (a) the no-isolated-bit constygintthe
its complement. The famoud, co)-RLL constraint a variant (1, c)-RLL constraint on the square lattice, and (c) the PC constrairihe
of which will be discussed in the next section, forbids twdsianquilar lattice
adjacentl’s. For our example we choose a constraint we call
the Path-Cover Constraint (PC Constraintand which we
motivate by first examining its one-dimensional version. If we
are given a graphG = (V,E), a path-cover for the graph
is a set of simple paths (open or closed) of positive length,
which are vertex disjoint, and which cover all the vertices. An
alternative way of stating this constraint is that given a graph,
we assign either @& or a1 to each of the edges, such that
when removing the edges with @ all the vertices remain
with degree of either one or two.

In the one-dimensional case the graphis simply the
one-dimensional lattice with vertice8 = {vg,v1,..., 0.}
and edgesE = {(v;,vi41) | 0<i<n—1}. It is easily
seen that a valid PC assignment of values to edges is any
assignment which does not contain two adja@sitThus, the
one-dimensional PC constraint is the famous one-dimensional
(0,1)-RLL constraint (and with bit-flipping, thé1, co)-RLL
constraint). The capacity in this case is known tdde, [(1 +
V/5)/2] = 0.69424. ...

Turning to two-dimensions, we choose the two-dimensional
triangular grid as the grap@: we tile the plane with regular
triangles, place a vertex at the center of each triangle, and draw
an edge between vertices whose triangles share a face. Again,
we assign either & or a1 to the edges of the graph such
that after removing the edges assigned, all the remaining Figure 9 The top image shows part of a netwo'rk of relations fqr the PC

- . P constraint. Each filled circle represents tRe relation. The gray triangles
vertices are of degree eithéror 2. We note that this time, show the original cells of the triangular grid. The bottom imahows the
the PC constraint is different from the usual two-dimensionglp left corner of the array with the filled squares represerttie . relation.
RLL constraint. Also, unlike the two-dimensional RLL and
the no-isolated-bit constraints where values are assigned to

vertices, in the PC constraints values are assigned to edgf$not contain the same bit, i.e., the forbidden pattern of PC. It
See Figure 8 for an illustration of the forbidden patterns ig easy to be convinced that, if we ignore the perimeter of the

(@) (b)

moow>

Fa ~

the three discussed constraints. array, every constrained array induces exactly one satisfying
assignment and vice versa. The resulting network of relations
B. The Network of Relations is shown in Figure 9.

There is a multitude of possible reductions of a constrainedWe do however have to take care of the perimeter of the
two dimensional array on the plane to a network of relationarray as well. To do so, we connect dangling edges to extra
We show a simple reduction for which the constrained arraysrtices of the accept-all relatigh.. Each such vertex has the
are in an “almost” one-to-one correspondence with the satfstential of multiplying the number of satisfying assignments
fying assignments to the network. by a factor of2. But since we have onl{)(n) such vertices,

We think of the triangular grid as drawn on a plane. Wthis does not change the capacity as calculated by counting
replace each vertex of the grid with the relatin. on three the total number of satisfying assignments. The extra accept-
variables. This relation makes sure that the three adjacent callsvertices are also shown in Figure 9.



C. The Matchgrid and do not form an inner face with the rest of the graph. Thus,

It is easily seen that the network of relations we built iff’€Y May be oriented arbitrarily.
the previous section is bi-partite graph by noting that the
upright triangles are connected only to the inverted trianglgs, The Exact Capacity
and vice versa. Conveniently for us, for the main bulk of the . .

. . For mathematical convenience, from now on when we say
network, we have just one type of relation, but we do have N .
) . nn X n array” we mean am x n set of basic blocks. In our

to specify some as recognizers and some as generators. &

e . ) ST .
arbitrarily choose to build a generatBr, in inverted triangles, case, the basic block depicted in Figure 10 contains Ryo
and a recognizeR_ in upright triangles. Those were already

vertices and (when viewed periodically) three edges from the
. ) ) C . original network which are to be assigned eithdrar al. In
realized in Example 3 using the basis given in (3). . . . X .
: . light of the previous sections, the capacity of the constrained
For the perimeter of the network we need to implemen T,
temS we are now examining is given by

; . . SYs
¢+ both as a generator and as a recognizer. Again, this wals

already realized in Example 3. 1 Pf(A 1 det(A
n=00 3n2 1n—00 3n2
D. The Pfaffian Orientation where A is the skew-symmetric adjacency matrix of the

Finding a Pfaffian orientation for the graph is an easy tas@‘_"‘td;]grid corrgsponding to trfrex nhco?straiﬂed array. Thle K
The orientation is not necessarily unigue and some may 3nn t_ € denommgtor COmMES from the fact that a basic bloc
fact be quite complex to describe. However, the extremefPtains three bit storage positions (three edges from the
regular nature of the graph suggests the existence of a sim@iginal network to be assigned a value). _
orientation. A derivation of an expression for the exact capacity largely

If we closely examine the network of relations in Figure 9‘3‘?pe|'f‘f‘_3'5 on the ga;e of m:;mpli‘latlng t?]e mattixThe first
we see that, apart from the perimeter of the array, it is mage"P! |cat|3n weh.or;s note tbatt ke mgtc gatesﬁqrcontamh'
up of a singlebasic blockand its translations. The simplesﬂUSt one edge which must be taken in any perfect matching,

basic block is just a recogniz&, vertex and a generatdt., Which als_o forc_es the edge connecting the m_atchgate to_ its
vertex. This basic block may be oriented as shown in Figu?@gle neighboring matchgate to be dropped. Since the weight

10. It is also easy to verify Kasteleyn's orientation rule fof! (he €dge is a constant (depending on whether it is a

planar graphs: every clockwise walk on an inner face has gfnerator or a recognizer), and since we have ddly)

odd number of edges agreeing. This may be verified both f3fch matchgates along the perimeter, we may ignore them

the inner faces of the block, and the inner faces created by fE9ether without changing the resulting capacity calculation.
joining of a few blocks So from now on, by abuse of notation, l&tdenote the skew-

symmetric adjacency matrix with thg, matchgates and their
connecting edges removed.
The components for a compact representatiod adre the
Al skew-symmetric matrix for the basic block (where the vertices
are indexed as in Figure 10),

0 -1 1 -1 -1 0 0 0
1 0 -1 -z 0 0 0 O
-11 0 -3z 0 0 0 0
p—| 1 1 1 0 0 0 0 Of
1 0 0 0 0 -1 1 2
0o 0 0 0 1 o0 -12
o 0 0 0 -1 1 0 2
0 0 0 0 -2 -2 -20

and the matrixp; ; (of the same dimensions & which is
all zeroes except for positiofy, j) which is 1. Furthermore,
we needl, then x n identity matrix, and the: x n matrix

0 1
0 1
u, %
Figure 10. A Pfaffian orientation of the basic block. The dotted edgeotEen L
the edges between translations of the basic block. The numbesguiares 0 1
index the vertices. 0

Finally, we also have to orient the edges which correspomdth the unspecified positions being zero as well.
to the ¢ matchgates which lie on the perimeter of the array. We have am x n array of basic blocks which we order in
Those matchgates do not contain any inner face themselbg natural way. This part of the graph is represented by the
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skew-symmetric adjacency matrix Lemma8. If f : QF — C**k js an integrable Hermitian
matrix-valued function, angh, M € R are constants such that

m<A(f) <M

I, ® I, ® B.

We still have to represent the edges between basic blocks in

the same row, foralll < j <k, then
In®un®A6,2_1n®u,{®Ag,2, mg/\j(Tﬂ(f))gM
and the edges between basic blocks in different rows, forall1 < j<kni...np.

Proof: First, it is an easy exercise to show that when
T T ,
Un @ In @ Az3 = Uy @ In @ A7 5. f is Hermitian thenT,(f) is Hermitian as well. Since the
Thus, we get an expression for the skew-symmetric adjacergigenvalues of a Hermitian matrix are all real, A¢t) andA(-)

matrix A, denote the minimal and maximal eigenvalues respectively. It
T T is well known that for a Hermitian matri¥{,
A=LL B+, U, QMg — L, U, @ Ag, . .
T T A(H) = min > Hx nd A(H) = X Hx 5
+ U, 0L @A - Ul 0L @Al @) A )—r;;;g pore a ( )—rggg - O

For the last step we rely on the theory of spectral disvherex* denotes the conjugate transposexof

tribution of Toeplitz matrices (see Tilli [34]). Let us denote Let m €R be a lower bound on the elgenvaluesﬁ)fo

Q % [~ 7, 7). For natural numbers, k > 1, let an integrable (5), for every vectow (including the0 vector),x* fx > mx*x.

p-variate functionf : Q¥ — Ck*k and a multi-indexn = From now on it is a matter of keeping track of the indices
(n1,...,mp), n; > 1 be given. Thep-level Toeplitz matrix Properly. Leti = (i1,...,ip) and j = (j1,...,jp) be multi-
T, (f) is defined as indices. By the definition ofT,(f) we have (T.(f));; =
aj_i(f). Letx # 0 be a vector of lengttkn, ...n, which

n1—1 'rlp—l . X .. . . .
def (1) (jp) o we divide into contiguous blocks of lengkhwe index by the
Tu(f) = z Z Jiy” @@ Ju,” @y, (f) same multi-indices. Thus,

h=—m+1 jp=—np+1
X Ty (f Z Zx aji_i(

fzz [ f()ﬂfﬂ%ﬂ

where ],(,f) denotes the matrix of ordew: whosei,; entry
equalsl if j —i =1 and equals zero otherwise, and where

def 1 _
i) G [ SO0 i
e W=D £(p)xidp
is a matrix inC**k andi = v/—1. The following theorem is 2m)P /Q Z z f (@)
due to Tilli [34]. - / ot g
e X X
Theorem7.If f : QF — CK*k js an integrable Hermitian )P Jor ;;
matrix-valued function, then for any functioh, uniformly 2
continuous and bounded ovi&rit holds n 7 / ) e 0%l de. (6)
1 knl...np Q
li FiAA(T, =
n1—>r§o ni...ny ]Zl [ ]( ﬂ(f))} We also have 2
1 -k x*x = |x]‘ e*ij'd’xj dp. (7)
= 2 Jo & PN 2 o |2

) Combining (6) and (7) it now foIIows that
whereA;(M) denotes thg-th eigenvalue oM.

* X
To apply this theorem to our needs we notice the following: A(Tu(f)) = g‘;g xn%;) > m
First, for ann x n matrix X we havelog, |det(X)| =
S log, [Ai(X)]. Second, we notice thatl from (4) is a
2-level Toeplitz matrix, but it is skew-symmetric and not : , i
Hermitian as required. This is easily fixed by noting that Getting back to our problem, since we are interested

is Hermitian, and since the order dfis a multiple of4, then N 10g, [det(iA)| = F;log, |A;(iA)], we want to bound
det(A) = det(iA). Thus,iA = T,(f) where we define  the magnitudeof the eigenvalues ofA = T,(f(¢1,¢2)).
We do this by bounding the magnitude of the eigenval-

fld1,d2) =i[B+eP1Ag0 —e 1AL, ues of f(¢1,¢,) and using Lemma 8. We do not really
PN, 7e—i¢2A; ] need to find the exact values af, M € R such thatm <
’ ’ [Ai(f (1, d2))| < M, but show thatM < co andm > 0.
Before we continue we need a lemma to connect theOur first observation is that there existd € R such that
eigenvalues off with those ofT,(f). A(f(d1,¢2)) < M < oo, since f(p1,¢2) is a matrix of

as we wanted to prove. The proof for the upper bound is
ymmetric. m
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constant size and bounded magnitude entries. Thus, usiffgeorem 7. It might be possible to get an equivalent result
standard bounding techniques (for example, Gershgorin cireteTheorem 7 forf(¢) which are trigonometric polynomials
theorem), the maximal magnitude of an eigenvalue is boundefd degreel (see [5]). If all else fails and the eigenvalues
by a constant. To continue, a simple calculation shows thatrre not bounded away fro), we can convert the equality

det(f(¢1,¢2)) =

=21 —4cos¢y —4cospy —4cos(pr — ¢n).

of Theorem 7 to an inequality, stating that the limit is less
than or equal to the integral. This is done by choosing the

sequence of functiong; (x) def max {—/,log, |x|} (where

Thus, we havelet(f(¢1, ) = 9. Since we also know that OPViously Fy(x) > log, [x[), using Theorem 7, and finally

det(f(d1, ¢2)) = MMiAi(f(d1, ¢2)) and [A;(f(d1, ¢2))| <

using monotone convergence @s- oco.

M and we have a constant number of elements in the product,

it follows that there is a constamt € R, m > 0, such that

\Ai(f (1, ¢2))| = m.

Now that we have bounded the magnitude of the eigenvalues
of f(¢1,¢2), and by Lemma 8, those &, (f(p1, d2)), we

IV. A POLYNOMIAL -TIME ALGORITHM FOR COUNTING
CONSTRAINED ARRAYS

In this section we describe an algorithm for counting the

are ready to use Theorem 7. Let us define the funclion exact number of constrained arrays of sizex n that runs

R — R as
log, |m| |x| <m
F(x) € 1og, x| m<|x| <M
log, IM| |x| > M.
The functionF is uniformly continuous and bounded ovEr
Furthermore,
log, [det(f(d1,d2))| = ) log, [Ai(f(¢1, ¢2))]
1
=Y F(Ai(f(¢1,¢2)))
and also
log, [det(Ty(f))| = 3 logy [Ai(Tu(f))]
1
= 5 F(Tu(£))).

By Theorem 7 it now follows that

1 A
cap(S) = lim 08 vV IR det(4)

n—o0 31’12
. 1
= lim — log, |det(Tu(/))

1 o7
=i [ oy det(£(61, 02))] ddndg

1 7T 7T
:m/_ﬂ/_nlogzpl—4cosd)1—4cosqb2

—4cos(p1 — o) |dprddy

= 0.72399217 ...

in time polynomial inn. Though this algorithm applies to
the example from the last section, we use the opportunity to
switch examples and show two generalizations which extend
the reach of our method. The first one we ogdineralized
relations and the second is the use of non-planar graphs.

The constraint we use throughout this section may seem
contrived, but it is instrumental in showing the added degrees
of freedom provided by being able to count constrained arrays
on other surfaces, such as a torus in this case, and the benefit
of generalized relations. It is also interesting in the sense that
local constraints enforced by the relations result in a global
constraint. The constraint we examine is similar to (theo)-
RLL constraint defined by the forbidden patterns shown in
Figure 8. Aviolation of the (1, co)-RLL constraint is a pair of
adjacentl’s where we have two kinds of violations: horizontal
and vertical. We define théalanced-violation(1, co)-RLL
constraintas the set of all binary x n arrays such that the
number of horizontal violations equals the number of vertical
violations.

We will consider arrays which are placed on a torus. To be
mathematically exact, we index thex n array byZ, x Z,,
and since we are now working on the square grid, the positions
adjacent to(x, y) are (working modula: of course)

{x+1Ly), (x=Ly), (x,y+1),(x,y—1)}.

Thus, ann x n array A is balanced-violation(1, co)-RLL
constrained, if

|{Axry = Ax+1,y = 1}’ = |{Ax,y = Ax,y+l = 1}

where all indices are taken moduio We note that the famous

7

As far as we know, the number that we just calculated], co)-RLL constraint is a subset of this constraint in which
namely, 0.72399217 ..., is the first known nontrivial exact the number of violations is further constrained to be zero.

capacity of a 2 dimensional constrained system.

A couple of remarks regarding the calculation: If the eiger}i Generalized Relations

values ofiA were not bounded away fron®), then we could
not set F(x) from Theorem 7 to behave likéog, |x| on

Given a network of relations on a grajgh= (V, E), with

the interval containing the eigenvalues and still be bound@dery vertexo € V' representing a relatioR, C Qdes®) we
and uniformly continuous. This creates a probfeim using have considered assignments of values to the edgeg —

Q. We called assignmem a satisfying assignment if every

41t should be noted that physicists have been using this claimowith relation was satisfied, i.e., for every A, € R,.

rigorous proof for over 40 years. The earliest examples to owwledge
are [24], and also [23] in which an early incorrect form of asyotip matrix

equivalence is used as proof.

If we remember that we can think of a relation on
variables as a functioR : Q" — {0,1}, then the number
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of satisfying assignments is also represented by assignment contribute a multiplicative factoroto the score
of the assignment. Essentially, theycle is simply an equality
o(G) = ; Ro(Av), (®) relation on four legs. If we look at the gray cells of Figure 11,
o€ which represent the original cells of the square lattice, then
where the sum is over a"D\IE' assignments. Obviously, only the 4-cycle inside each cell makes sure a single value, either
if all vertices are satisfied then the productiisThus the sum 39 or a1, is assigned to edges exiting the cell in assignments
is counting only satisfying assignments. with non-zero contribution. This value reflects the value of the
The generalization is now immediately clearg@neralized cell in the constrained array.
relation on n variablesis a functionR : Q" — C. The e also have to somehow check for violations, i.e., two
“number of satisfying assignments” is still defined by (8) buiorizontally- or vertically-adjacent cells with value dfin the
is not necessarily a non-negative integer anymore. Intuitivepnstrained array. To this end, the relatidi§, 4 and R;,q
every assignment gets scored by the product of the “amountgpg placed between the gray squares of Figure 11. They check
satisfaction” of individual generalized relations. We also noi@e value of two adjacent cells as reflected by the assignment
that, although we only us€, it may be replaced by otherg the edges exiting the two adjacent gray squares. Whenever

algebraic structures. _ two adjacentl’s are detected, the relations penalize the number
We now turn to designing the network of relations fopf satisfying assignments by a multiplicative factor of either
our constrained system. We still use = {0,1}. Let (k for a vertical violation, orw; ¥ for a horizontal one.

m €N be some integer. We will construct a set of networks Now assume some assignment hagertical violations and
No,N1,...,Ny—1 Where inNg, 0 <k <m —1, we will use 1, horizontal ones. The score of this assignment is obviously

the following four relations: wi"™ if we denote byA,, the number of arrays with
x1 x x3| Rf | RZ vertical violations and: horizontal violations, and by the
0 0 0 1 1 number of satisfying assignments ., then
0 0 1 0 0 X1 X | Rnand| Rpand n? n? o—h
0 1 0| 0 0 0 0] 1 w=y 3 Ay k™M,
0 1 1 0 0 0 1 1 1 =0 h=0
100 0 0 10 1 1 It follows that
1 0 1 0 0 1 1 w% (,U.,;k .
1 1 0|0 0 1 mt o 172 ko—h)
3k | 3k — ) 0= App— y w
L1 1 [agy, | @y m kZO UZO hZO “tm kZO "

= 3 Ag

def o . .
where w,, = ¢27/m_The network of relations is shown in h God )
= mod m

Figure 11.
Since0 < v, h < n?, if we choose anyn > n? then
1 m—1
— ) 0= Apn =) Agn
m kZO v=h (god m) v;h

which is exactly what we wanted to count in the first place.
Two major issues remain to be dealt with: the fact that we have
a non-planar graph because of the torus, and the fact that we
can calculate the above expression in polynomial time.

B. Counting Arrays on a Torus

We start in the usual manner: we arbitrarily choose to
realize RJ_:_ and Rn+and as generators, whilRZ and R ;.4
as recognizers. For the netwot,, 0 < k < m—1, we
Figure 11 Part of a network of relations for the balanced-violatidnoo)-  choose the basig = [(1,1), (wi,fif —wz}’i)} and the resulting
RLL constraint. Circles represent thie_ relation and squares represent thematchgate realizations are shown in Figure 12
Rnand relations. Filled vertices are of the" variant while empty ones are of . . ’
the R~ variant. The gray squares show the original cells of the redtang  |f We ignore the fact that we are working on a torus, then
grid. finding a Pfaffian orientation for the graph is a task which may
be done in polynomial time (see [18]). We now turn to handle
The first thing to note about this network of relations, ishe problem of working on a torus. If we can draw the graph
that the4-cycles with twoR* and twoRZ will zero out an on a surface with genys without any edges crossing we call
assignment unless the wires incident to it areGahr all 1. it a graph of genug. Kasteleyn stated without proof, that the
Furthermore, in the case of an dll assignment, the scoreperfect matching of a graph of gengisnay be calculated using
of the assignment is multiplied twice by3* and twice by a linear combination o048 Pfaffians. A proof of this statement

w;nfk and so in total, both the all assignment and the al may be found in [13], and for more general surfaces, in [32].
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M. If not for (—1)*(M)  this would be the expression for
1/3 1/3 PerfMatch(G). Since the only possible crossings occur in the
, W wrap-around edges, for a perfect matchimglet 5, denote
the number of horizontal wrap-around edgesMh and vy,
the number of vertical wrap-around edgesifi Obviously,
the number of crossings iél is k(M) = hpvp;. We partition
e e e e all the perfect matchings according to the parity/gf and
v calling them(e, e), (e, 0), (o, ¢€), (0, 0), wheree stands for
5 even, andb stands for odd, while the first entry is the parity
@ ) of T
The crossing orientation for a torus was shown in [32] to
take on a very simple form. We orient all the edge&:afxcept
for those inEy U Ey. This is always possible since no other
edges are crossing. Then we orient the edgeBipfas if Ey
201+ wih) L L+ ak) L did not exist. Again this is possible sin€e — Ey is planar.
o e e TS o To complete the orientation, we also orient the edge&pf
2(1— wyk) 11— ak,) as if Ey did not exist. We call the resulting skew symmetric
adjacency matrixA;. By (9), Pf(A;) counts all the perfect
matchings with the correct sign except for those of type)
since that is the only case with an odd number of crossings.
We may now flip the signs of the weights @ép; while keeping
(© (d) the orientation (hence, keeping the safa@s in (9)), and get
Figure 12 Using the basig3 = [(1,1), (w;*, —w;¥)] we get weighted & matrix Ay. If we just f!ip the ,Signs Of_ the weights OEV
graphs for (a) a generator f&*, (b) a recognizer foR=, (c) a generator W€ get Az. And finally, if we flip the signs of the weights

for R,y and (d) a recognizer foR; 4 on both Eyy and Ey we getA4. In Table | we see how the
different Pfaffians count the four types of perfect matchings
of the original graphG. It is easily seen now that

In our case, a torus is a surface with geduand the linear
combination takes on a very simple form. First, it is a well- PerfMatch(G) =
known fact that any grapks of genus1l we can draw on the 1
plane with no edges crossing, except for a set of horizontal = £5 [PE(A1) + PE(A2) + Pf(A3) — P(A4)].
wrap-around edge&y and vertical wrap-around edgds;
which do cros®. See Figure 13 for a sketch.

TABLE |
THE SIGNS GIVEN TO PERFECT MATCHINGS O BY Pf(A;),...,Pf(As)
(e €) + + + +
(e,0) + + — -
(o,e) + - + -
(0,0) - + + -

It follows that each of theoy, 0 < k < m — 1, may
be calculated up to a sign by a linear combination of four
Pfaffians. Moreover, we note that the Pfaffian orientation of
the graph is the same fag,..., G,,_1 which correspond
Figure13. A drawing of a graphG of genusl on the plane with only the to the netwo_rkSNO' T Nm*_l' Thus, the:l:_ IS the_ same for
horizontal wrap-around edg&; crossing the vertical wrap-around edgas ~ all and the linear combination ofm Pfaffians will give us

Y1, 0% up to a sign.

It was shown in [32], that for any graph there exists what

is called acrossing orientatiorof the edges such that

C. Algorithm Complexity

Pf(A) = + (=1)*M) 1T wl(e), (99  Our task is now to show that we can calculate the linear
Me PM(G) S combination of4m Pfaffians in time polynomial im. We

. . . 2
where A is the skew-symmetric adjacency matrix 6fand C100Se the smallest possibig i.e.,m = n” +1, and then we

2 - ; ) 2
k(M) is the number of crossings in the perfect matchin@af‘ve4<" +1) Pfafflan_s of_matrlces .Of sizen® x cn” where
¢ is the number of vertices in the basic block, a constant. Thus,

5In the general genug case this is called plane modebr a pasting map if We. C_an .ShOW that W(_e Cfin calculate a Pfaffian of/ar ¢
(see [32] and references therein). matrix in time polynomial in¢, then we are done.
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There is, however, another complication we have to takan use a simple tree for finding the product: in the first round
care of. The entries of our matrices are complex numbesg partition the/ matrices into pairs and take their product.
with infinite precision. We, on the other hand, may onlyn the second round we take the resultiig matrices and
work with some fixed precision of binary digits before repeat the process, and so on. In each round we use the results
and after the binary point, i.e., represent numbers which drem the previous round, and in total we have at mdsg, /|
< 28 with absolute error< 278, Thus, to make sure ourrounds.
algorithm is indeed polynomial if, we will have to show  |n the next stage, after computing all the coefficients we
we can calculate the entries with precisigrin polynomial need to convolve them to compute the coefficientA8fin
time, run a polynomial time algorithm with fixed precisionpAW This, again, may be implemented by taking the product
and then recover the correct result in spite of the initial errgf at most/ matrices of size at most2 x £2 in [og, ¢]
of approximation and the accumulated error while running thgunds as we did in the previous stage. The matrices simply
algorithm. hold the coefficients in staggered rows padded with zeroes,

We start by describing the algorithm for calculating thes simulate the convolution. This process is then repeated for
Pfaffian. There are several known polynomial-time algorithmgach of the Pfaffians and the resulting numbers summed, and
but in order to easily bound the error we prefer to use gince the number of Pfaffians required in our case is @0
division-free algorithm. Such algorithms are described in [2§}e have a polynomial time algorithm.

and [22]. We will use the algorithm by Rote [28] and describe |, summary, we need to compute the linear combination

it for completeness. _ _ of ¢’¢ Pfaffians,c’ a constant, where for each Pfaffian we
Let A be ant x ¢ skew-symmetric matrix/ ever?, and of (ae the product of matrices of size at mdstx /2 in at
the form, 0 al » most 2 [log, ¢] rounds. It remains for us to prove that we

can do so with fixed precision arithmetic using a polynomial
- number of digits. As mentioned before, let us work with some
-r s ‘ A fixed precision ofg binary digits before and after the binary

with A,_, being an(¢ —2) x (¢ —2) skew-symmetric matrix. Point, i.e., represent numbers which age2¢ with absolute

Let us also define thé x ¢ skew-symmetric “identity” matrix €rror < 28. If we show that for somg which is polynomial
B, by in £ we can still recover the wanted result despite the errors

introduced along the way, then we are done.

We now follow a similar line of reasoning used by Valiant
in [36], which we bring here for completeness, and adapt it
to our case. LeY C C denote the set of all values appearing
) = . as entries in the initial matrices whose Pfaffians we want
' to compute. DefineD def max{|y| | y€Y}. We note that
0 1 because of the edges between matchgates with weéighe
-1 0 have D > 1. We now run the above mentioned algorithm
with a fixed precision ofy binary digits before and after the
binary point, resulting in absolute error of at mas¥ in each
roundoff operation.

Ga,(A) def 24,4 § rBy_o(Ay_oBy_p) 1sA 2 We need to bound both the largest modulus of any entry in
= the matrices used during the algorithm, as well as the resulting
maximal absolute error. Before we do that, Iétdenote an
upper bound on the largest modulus of any value computed
in the i-th round of theexact algorithm, i.e., with infinite
precision. ObviouslyFy = D and we can usd; > F? (2
Pa,(7) def Ga,(A) - Pa, ,(A). since we are taking the product of tw& x 2> matrices
_ ) _ ) with entries with maximal modulus;_;. Certainly taking

Several observations regarding this algorlthm may be easﬁly: (Dgz)zl gives an upper bound which is strong enough
made. We use very Iopse pou.nds which are .good. enoq%lp our needs. We note tha > 1 necessarily.
to show that the algorithm is indeed polynomial with the N ' .

ow let ¢; denote an upper bound on the absolute error in

desired accuracy, while allowing a very simple analysis. VYﬁe modulus of any entry iftth round of thefixed precision

2:;?;52 fwgl the coeéﬂmeg;s d ?r: ;gihti)rfmtzogzit psouv;lﬁegesalgorithm, which is caused by the roundoff operations. We can
Agr DAy _gse s DAy take g = 2%, and we will make sure that 8 < €; < 17,

to compute the coefficients of the terms up to thatrof. where we remind that’¢ is the number of Pfaffians in the
Hence, we need to computé/4 coefficients of the form [inear combination. This contention will be kept throughout
rBj(A;B;)'s. Each of this is made up of a product of Up G computation by noting that; < €i1 and by bounding
¢/2+3 < £ (for £ > 6) matrices of size at mostx (. We  yhe error in the last round by choosing a suitable precigion
5We note that the restriction to evérdoes not hurt us since our graphs will Let U and V' denote the modulus of two entries after
always have an even number of vertices or else no perfect ingtettists. 1 rounds in theexactalgorithm. Then in thdixed precision

Finally, given A, we define the formal power seri&sy, (A)
as

Given these definitions, it was shown in [28] td{ A, ) is the
coefficient of A° in the formal power serie®y, (A), defined
recursively by
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algorithm, the maximal error in modulus when multiplying thaince|§| < x. Thus, the absolute errerin computingsin(x)

corresponding values is bounded by taking is at most
-~ 2y i—1
(Ute1)(V+eq)+278-UV e =200 o5 ( Z‘)|
= 2 - i=1,35,... :
S e (47r)i-1

(o]
—Q(n)
<2F_jeiq+et +2 8% <270 +208) Z,;

(i—1)!
Thus, afterf2 summations (which incur an add@ds error) =270 12547
we get the maximal absolute error in the modulus of an en

tt%t sinced may be made exponentially small in polynomial
after thei-th round to be at most?(¢’ +279), i.e., Y P y POy

time, so ise. A similar analysis applies teos(27tk/m) as

def well.

€ = (*(2F_1ej_ 1 +€r,+2-279%)
< 5521:1‘—161‘—1 < (5€2)iFi_1Fi_2 ... Fyeg

= ~ 5o V. CONCLUSION AND OPEN PROBLEMS
< (562 (DA)* 278

We presented a general method that enables the calculation
of the exact capacity of some two-dimensional constrained
systems, as well as a polynomial-time algorithm for counting
the exact number of constrained arrays in the system. The

§ = O (g, D log, ) by piaces fer e biary 100 569 2 series o ecuclons, o o guen contaed
point, the absolute error in modulus in any of the entries I?/ls the theory of spectral distribution of Toeplitz m%tricesgthzt .
small, ¢; < ﬁ. Furthermore, since no entry is larger in y P P

] \oi ) allows us to find the limit of the determinant of the modified
magnitude thanf; = (D)7, theng = O(£%)(log, D +  agiacency matrix of that weighted graph and in turn yields the
log, ¢) binary places to the left of the binary point will S“ﬁ'cecapacity of the system.
as well. It now follows that the sum of ¢ Pfaffians, each \yhile we were able to rigorously compute the exact capac-
computed to within an absolute error gi, has an absolute jiy, of the Path-Cover constraint in a two-dimensional system,
error of magnitude at mosf. Since we know the sum of the sadly, we have not been able thus far to come up with an exact
Pfaffians should be an integer, we can easily round the resgfg rigorous closed-form solution to the hard-square entropy
to the nearest one and get the correct value. constant, i.e., the capacity of the two-dimensiofid)co)-
Finally, we have to consider whether we can compute th@ | constraint. This raises the key open question: What is
entl‘ies Of the |n|t|a| matl‘ices, Whose Pfaﬁians we want t@]e expressive power of our proposed method’)
compute, tog digits of precision in polynomial time. The while performing the reductions associated with the pro-
entries which contain integer constants or even rational NURbsed method, one may “get stuck” at two different stages: (i)
bers, are obviously easy to compute to within a polynomigbt being able to find a basis for the holographic reduction,
number of binary digits in polynomial time. The slightlyor (ji) getting a modified adjacency matrix with eigenvalues
more complicated case is that of the entries which contaigt bounded away frond. Without knowing the expressive
sin(27tk/m) and cos(27tk/m). The constantrr is easily power of this method we do not know whether we reached a
computed to within a polynomial number of digits using, fogead end, or simply took the wrong path in fixing some of the
example, the BBP algorithm [1]. Thesin(27tk/m) may be many degrees of freedom the method offers. Those degrees of
Computed USing a Simple Maclaurin Series, Only we have ﬁ(éedom generate some more open pr0b|ems:

consider two sources for error: the error in the approximation, |s there a systematic or best way of reducing a constrained

where we used the fact thaf | < F_qe;; and278 <
€i-1 < Fi1€i-1.
Since we are interested thlog, ¢ + O(1) rounds, then for

of 77, and the error caused by computing only the firserms system to a network of relations (perhaps generalized
in the series. relations)? The wrong reduction may lead to a dead end
Let 0 < x = 27tk/m < 27, and let us examingin(x + §) in any of the next stages of the reduction.
whereé is a function of the absolute error introduced by the , Given a certain basis, what are the sets of matchgates that
computation ofr. are realizable together?
‘ (x+58)° (x+06)° o Can we generglize holographic reductions to non-binary
sin(x 4+ 6) = (x+6) — 3 = + -+ Ry, alphabets? This would perhaps enable us to create planar
: ' networks of relations for “wider” constraints such as
where ; the currently binary non-planar no-isolated-bit and the
IRy| < (x+9) ) general(d, k)-RLL constraints.
n! « How do we choose generators, recognizers, or transduc-
We can assumg| < x and so by the Stirling approximation, ~ €rs? Can we break down relations on a large number
for n > 47re we have|R,| = 2-Q(1) | Now, of variables, Fo smalle_r relations (perhaps creatmg_ gen-
erator/recognizer conflicts)? For example, #heycles in
(x + &) . x| 2kl Figure 11 are essentially emulating a transducer match-
il = il ‘ gate with2 inputs and2 outputs. Replacing it with a
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single equality matchgate which is either a generator o]
recognizer eliminates all possible bases for a holographic
reduction. 18]

We trust and hope that these interesting open problems will

be the subject of future research.

(19]
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