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Abstract— Certain storage media such as flash memories use
write-asymmetric, multi-level storage elements. In such media,
data is stored in a multi-level memory cell the contents of which
can only be increased, or reset. The reset operation is expensive
and should be delayed as much as possible. Mathematically, we
consider the problem of writing a binary sequence into write-
asymmetric � -ary cells, while recording the last � bits written. We
want to maximize � , the number of possible writes, before a reset
is needed. We introduce the term Buffer Code, to describe the
solution to this problem. A buffer code is a code that remembers
the � most recent values of a variable. We present the construction
of a single-cell ( ����� ) buffer code that can store a binary ( �	��
 )
variable with ��� 
������������� ����
 and a universal upper bound to
the number of rewrites that a single-cell buffer code can have: ���� �! #"$ �  %"'&)( � � �+*-,/. $10�2-3 � �4�'5 mod 3 �+6)�7�85:9 � �<; & . We also show a binary
buffer code with arbitrary ��= � =>� , namely, the code uses � � -ary
cells to remember the � most recent values of one binary variable.
The code can rewrite the variable �?� 3 � �@�'5 3 �A��
'� � �'5 � �B�@�
times, which is asymptotically optimal in � and � . We then extend
the code construction for the case �C��
 , and obtain a code that
can rewrite the variable ��� 3 � �D�'5 3 �E�F
G5 � � times. When � ��
 ,
the code is strictly optimal.

I. INTRODUCTION

We study asymmetric H -ary storage cells the content of
which can only be increased or erased (set to I ). The erase
operation is expensive and should be delayed as much as
possible. This model arises, in practice, in the context of flash
memories and similar storage devices that use an isolated
charge in order to record data [1]. Different processes (e.g.
tunneling vs. hot electron injection) are used to increase or
decrease the charge, giving rise to the asymmetry. Without a
scheme such as the one presented in this paper, the process
of updating stored data requires large blocks of memory to be
reset and rewritten, even if only a small fraction of that data
needs to be updated. We consider the case of a set of H -ary cell
used to record a sequence of data bits, while storing the last J
bits. Our goal is to maximize K , the number of writes possible,
before the cells needs to be erased. Similar schemes have been
considered in the context of WOM codes, introduced by Rivest
and Shamir [8] and extensively studied [2] [3] [4] [5] [6] [7]
[8] [9]. WOM codes mainly address the case HMLON : binary
write-asymmetric cells. In this paper we consider arbitrary H .
We also introduce the notion of storing multiple consecutive
values of a variable.

Definition 1 ( H -ary storage cell):
A H -ary cell contains an integer value between I and HQPSR .
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Fig. 1. State machine for Example 1. It describes a TVU8W�X/WYU8W:X[Z\U�] storage
scheme used to write a binary sequence into a X -ary cell, while storing only
the last bit written. The maximum number of writes is X�Z^U corresponding
to the worst case scenario of an alternating sequence of U s and _ s.

When writing a new value into a H -ary cell one must increase
its content, or if that is impossible, set it to I .

In practice, H -ary cells can be found in flash memories and
similar storage media [1].

Definition 2 ( `1acbdHebYJ)b�KYf Buffer Code):
A scheme that allows a sequence of bits to be written intoagH -ary cells. At any point of the writing sequence, the lastJ bits written can be recovered. The code supports at most K
writes, before the cells need to be reset.

Recording the last J values of a sequence is useful in
practice for the implementation of certain data structures such
as stacks, also in the context of memory pages for which the
state of the RAM is saved to disk at different points in time.
The above definition can be generalized to the case where h -
ary variables – instead of bits, where h?LiN – are written and
recovered.

In the case of a single cell (i.e. ajLkR ) the buffer code
can be represented by a table, or in mathematical terms, by a
surjective mapping lnm from the set of integers oGI	b<pqprbdHEPsR�t to
the set of binary vectors of size J , ouIvb<Rnt m .

Example 1 (a simple `wRnbdHeb<Rxb�HAPgRuf buffer code):
We want to store a single bit of data into a H -ary cell, with the
ability to write as many times as possible. In the description
above, this corresponds to the case: JQLyR , a single stored bit.
The solution is to encode the single bit as the parity of the
content of the cell. For example, let HzLS{ :

cell value 0 1 2 3 4 5
stored bit 0 1 0 1 0 1

Notice that if the bit to be stored is the same as the one already
stored, the content of the cell does not need to be changed.
The number of possible writes is HFP�R , corresponding to the
worst case scenario of alternating R and I bits. Figure 1 shows
the state machine used to write the content of the cell. Every



transition in the input data corresponds to a |}R increment in
the cell value.

In Section II we generalize the above example to Js~�R .
Section III shows and upper bound to K for single-cell buffer
codes. Sections IV and V show two asymptotically optimal
multi-cell buffer codes, one being strictly optimal when HzL�N .

II. A SINGLE-CELL CONSTRUCTION

In this section we present a `YRnbdHebYJ)bYKYf buffer code and show
that it achieves: KEL�� HN m'�?�x� |�J7P�N
In other words, the code allows


��� ����� � |zJ	PFN bits to be written
into a H -ary cell before it needs to be reset (see Definition 1).
After every write, the last J bits written can be recovered.

Code Construction 1:
The `YRnbdHebYJ)bYKYf buffer code is defined by a surjective mapping,l m , from � to ouIvb/R�t m . Defined by induction:l � `1�%f�Lg� mod N

l�m��[��`1��f�L��� � `:Ivb!l)m�`1��fYf , if � mod N md�[�4� N m
`YRnb l m `1��f�f , otherwise

Here follow two examples using the above code for cells
of sizes { and RGN . For each example we show a graphical
representation of the writing (encoding) process, i.e. a state
diagram that defines by how much one needs to increase the
value of the cell, as a function of the current stored bits,
and the new bit being written. We also show a table, used
to read (decode) the content of the cell, i.e. the mapping lxm
mentioned in Construction 1, above. Compare the tables of
examples 1 through 3 to get an idea of the recursive definition
of Construction 1.

Example 2 ( `YRnb�{	bdNvb��xf buffer code):
We want to store N bits of data into a { -ary cell, with the
ability to write � times, i.e. after every write, the last N bits
are recorded, and can be recovered. Figure 2 shows how to
increase the value of the cell, as a function of the bit being
written. The starting state is InI . The following table shows
how to recover the last N bits, at any point of the writing
process.

cell value 0 1 2 3 4 5
stored bits 00 01 11 10 00 01

Notice that the above table can be generated by the state
machine of Figure 2 by following the arrows labeled |}R . The
number of possible writes is � , corresponding to the worst
case scenario of alternating I and R bits.

Example 3 ( `YRnb<RuN�bd�vbY�ef buffer code):
In this example we use a RGN -ary cell to store the last �
bits. Consequently we get a guaranteed minimum of � writes.
Figure 3 shows the corresponding state machine. The functionl)� is shown in the table below.
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Fig. 2. State machine for Example 2. This diagram shows by how much
one needs to increase the content of the cell, when writing a new bit. That
amount is a function of the current stored bits (the start state), and the new
bit to be written (the end state).
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000 001 010 011 100 101 110 111

Fig. 3. State machine for Example 3. It implements a general T:U8W�X/W:�GW 
 � � ���U�] buffer code. In Example 3, XB��UY� resulting in �	�M  .
value 0 1 2 3 4 5
bits 000 001 011 010 111 110

value 6 7 8 9 10 11
bits 100 101 000 001 011 010

Next, we show the main result of this section in the form
of a theorem. Without loss of generality, it assumes H}¡�N m .

Theorem 1:
The `wRxb�HebYJ)b�KYf buffer code, defined in Construction 1 is such
that: KcL¢� HN m'�?��� |�JFP£N

Proof: We need to show that any binary sequence ¤ of
length at most K will bring the value of the cell to at mostHDPiR . We first show that the worst case sequence, ¤u¥ , is an
alternation of R s and I s, namely the sequence:¤<¥cLy`YRnbdIvb<Rxb�I	b<RnbdIvpqprp¦f
of length K . In the state machine of Figure 2, ¤ ¥ corresponds to
alternating states `:IvRGf and `YR/I�f . Each state transition increases
the value of the cell by N , which is the maximum increase
for this state machine ( JML§N ). Similarly, in the J¨L©� state
machine, shown in Figure 3, ¤u¥ corresponds to alternating
states `VIvRGIxf and `wRGIvRuf , increasing the value of the cell by 4, for
each bit written. In the general case, as defined in Construction
1, any two consecutive entries of the table lnm , for whichl)m�`V�	ª)f4LO`VIvb/Rnb/prpqprbdIvb/RGf and l)m�`V���/f4L§`YRnbdIvb<pqpqprb/Rnb�I�f are such
that « ����PQ�	ª�«xLiN m'�?� , which happens to be the largest possible
increment of the l m state machine, therefore the sequence ¤ ¥ is
the worst case sequence. ¤ ¥ corresponds to J¬P­R initial writes
to get from state `VI	b�I	b<pqprpqb�I	b�Ixf to state `:Ivb/Rnb<pqpqprbdIvb<Ruf , followed
by an additional write for each N m'�?� rows of the table l m (the
size of which depends on H ). The JCP�R initial writes increase
the cell’s value respectively by N ª bdN � b/®<®<®<bdN m<� � , each of which
is the maximum possible. Therefore KEL 
¯�� �����u� |�J7P�N



III. UPPER BOUND FOR SINGLE-CELL BUFFER CODES

In this section, we present an upper bound to K for buffer
codes with a°L�R and arbitrary hYb�Heb�J .

We first define some terms that will be used throughout the
rest of this paper. For Rz±³²�±´a , we use µv¶ to denote the ² -th
cell. We use `V·G�)bd· � b/®<®/®'b�·'¸vf – called the cell state vector – to
denote the states of the a cells, where ·<¶ ( I�±³·'¶c±gH%P�R ) is the
state of the ² -th cell. For a variable, we use `1¹e�)b�¹ � b/®<®<®/bY¹�mGf
– called the variable vector – to denote the variable’s most
recent J values ( Iº±»¹�¶A±»h�P¼R for all ² ), with ¹nm being the
most recent value and ¹�� being the oldest among the most
recent J values.

By default, initially, all the cells are in the state 0, and¹x�ubY¹ � b<®/®<®'b�¹�m are all 0. For writing, we only need to consider
those writes that do change the variable vector. (For example,
if J@L½N and the current variable vector is `1¹e�DL§Rnb�¹ � L¾Ruf ,
then the writing operation that updates the variable to be ‘1’
does not really change the variable vector. Consequently, we
do not need to consider such a writing operation.) We define
the cell state vectors of the ² -th generation ( I@±¼²¬±¼K ) to be
the set of cell state vectors reachable after exactly ² writing
operations from the beginning.

Theorem 2: When a�LOR , K7±�¿ � �?�À � �?�uÁ ®GJF|©¿ÃÂqÄnÅ À o�Æq`VHzP¼Ruf
mod `Vh m P³Ruf�Çe|SR�t Á .

Proof: Suppose that a buffer code guaranteeing K writes
is given. Starting with a valid cell state vector, by performingJ or fewer writes, the variable vector `1¹e�)b�¹ � b<®/®<®/bY¹�m/f can
reach any of the h m possible values. Those h m variable values
correspond to h m different cell state vectors (possibly including
the starting cell state vector). Therefore, there is a sequence
of J consecutive writes that causes the cell’s state to increase
by at least h m P�R .

We choose the first set of J writes, the second set of J
writes, ..., the È -th set of J writes such that every such a set
of J writes increases the cell’s state by at least h m P¼R . Let È
be as large as possible. After those È8J writes, select a set ofÉ writes after which no more write can be performed. Let É
be as small as possible. Clearly, É � J .

Since the maximum cell level is HDPSR , È�±¢¿ � �?�À � ��� Á . Note
that ¿ÃÂqÄnÅ À o�Æq`VHQPiRGf mod `Vh m P¼Ruf�Ç#|�R�t Á � J . If È � ¿ � �?�À � ��� Á ,
then K¬±gÈ!J[| É � ¿ � ���À � ��� Á ®�JÊ±Ë¿ � �?�À � ��� Á ®�J[|¼¿1ÂrÄxÅ À o�Æq`VHEP°RGf mod`Vh m P�RGf�Ç%|¯R�t Á . Now consider the case that È\LÌ¿ � �?�À � ��� Á . In
that case, the last É writes increase the cell’s level by at most`VHzPgRGf mod `:h m PgRuf . As É or fewer writes lead the variable
value to h:Í possible values, with the same analysis as before,
we get h Í P}Rz±�`VH#P}Ruf mod `Vh m P}Ruf . So É ±¾¿ÃÂqÄnÅ À o�Æq`VH#P}Ruf mod`Vh m PÊRGf>Ç�|@R�t Á . So again, K¬±gÈ!Jv| É ±©¿ � ���À � �?� Á ®ÎJ�|­¿ÃÂqÄnÅ À o�Æq`VH#P}Ruf
mod `Vh m P³Ruf�Çe|SR�t Á . So the theorem holds.

IV. ASYMPTOTICALLY OPTIMAL BUFFER CODE FOR h�LSN
AND GENERAL acb�Heb�J

In this section, we present a buffer code for h^LkN and
general acbdHebYJ where a´¡¯N)J . That is, the code uses a´H -ary
cells to store the most recent J values of one binary variable
(a bit). In lots of electronic memories (e.g., flash memories),

the 16 bits of a word are stored separately in 16 parallel
blocks, using the same address. So the writing operation for
a word becomes a write for a single bit in each block. For
this reason, it is of particular interest to study the storage of
binary variables.

The code we present in this section achieves KELy`:H�P\RGf'`VaCPN)J?|�RGfn|^JBPºR . Note that a buffer code can write a variable no
more than `VHzPgRuf>aMP�R times. Therefore, the code presented
here achieves a K value asymptotically optimal in both H anda .

A. Construction of The Code

For the buffer code, we first present its construction for
the special case H´LÏN . We then naturally extend the code
construction for arbitrary H .

Code Construction 2: Buffer code for h�LÐN and generalacb�Heb�J , a­¡¼N)JÑ Mapping cell state vectors to variable vectors: By valid
cell state vector, we mean a cell state vector that can be
reached by some writing operations. Every valid cell state
vector `:· � b�· � b<®<®/®<bd· ¸ f of this code satisfies the following
property: For ²�L¯RxbdN�b/®<®/®8bYaDP@J , for any cell state vector
of the ² -th generation, there are exactly ² cells in the state
1 and aMPs² cells in the state 0; what’s more, all those ²
cells in the state 1 belong to the set oGµ	�)b�µ � b/®<®<®<b�µe¶r��m)t
(namely, the first ²�|�J cells).
Clearly, a valid cell state vector `:·G��b�· � b<®/®<®'bd·'¸vf is in the`�Ò ¸¶qÓ[� ·<¶�f -th generation.
A valid cell state vector `:·G�ubd· � b/®<®/®<b�·<¸vf in the ² -th gen-
eration is mapped to the variable vector `1¹e��bY¹ � b<®<®/®<b�¹�m/f
as follows: For Ô}LyRnb!N�b<®/®<®8b�J , ¹GÕ7LS·<¶r�%Õ .Ñ Writing: The code enables aFP}J writing operations. Let’s
say that the current cell state vector `:· � b�· � b<®/®<®/b�· ¸ f is`V� � bY� � b<®/®<®/bY� ¸ f and it is in the ² -th generation. ( IÊ±�² �a¨P£J .) Say that the next writing operation is to change
the variable’s value to É . (By default, only the writing
operations that change the variable vector are considered.
It means that if the current variable state is `VIvbdIvb/®<®<®<b�Ixf or`YRnb/Rnb<®/®<®8b/RGf , then É cannot be 0 or 1, respectively.) Then,
if É LiI , find an integer Ô@±´²#|¼R such that �vÕ7LSI , and
change ·!Õ – the state of the Ô -th cell – to be 1; if É LyR ,
then change ·<¶r��m��[� from 0 to 1.

The following is an example of the code.
Example 4: Let hyL NvbYaÖL ×	b�HØL N , and JÏL � .

If the aÙPÚJ L { writing operations change the
variable vector as `VIvbdIvbdIxf Û `VIvbdIvb/RGfÙÛ `VI	b<Rxb<RGfÛ `YRnb<Rxb�I�fÜÛ `wRnbdIvbdIxf�Û `VI	b�I	b<RGf�Û `:Ivb/Rnb�I�f , then
the cell state vector changes as `:IvbdIvb�I	b�I	b�IvbdIvbdIvb�I	b�I�fÛ `VI	b�IvbdIvb/Rnb�I	b�I	b�IvbdIvbdIxf Û `VI	b�IvbdIvb/Rnb<Rxb�I	b�IvbdIvbdIxf Û`VI	b�I	b<Rnb/Rnb/Rnb�I	b�I	b�IvbdIxf Û `:Ivb/Rnb<Rxb<Rxb<RnbdIvbdIvb�I	b�I�f Û`VI	b<Rxb<Rnb/Rnb/Rnb�I	b�I	b<RnbdIxf�Û `VIvb/Rnb/Rnb<Rxb<Rxb<RnbdIvb/Rnb�I�f . We can
see that given a cell state vector, recovering the variable
vector is very simple: just read the `VÝ»|yRGf -th, `1Ý�|iNxf -th,®<®/® , `VÝ�|�J�f -th entries in the cell state vector, where Ý is the
number of 1’s in the vector.



We now extend the above code from H�LyN to arbitrary H .
The code uses the cells “layer by layer.” Specifically, when H}~N , for the first a\PMJ writes, we use the cells as if HQLiN . That
is, the cells use only the two states 0 and 1. Then, let’s say that
the `VaAPDJ#|MRuf -th writing operation changes the variable vector
to `1¹x�CLiÞ)�)bY¹ � LiÞ � b<®/®<®'b�¹�m4LSÞum<f . The `1aDP^J[|sRGf -th writing
operation is carried out as follows: first, every cell raises its
state to 1, and we map this cell state vector – `wRxb<Rxb<®<®/®8b<Ruf
– to the variable vector `VIvbdIvb/®<®<®<b�Ixf ; from then on, treat the
cell state 1 (respectively, cell state 2) as the old cell state 0
(respectively, cell state 1), including the way cell state vectors
are mapped to variable vectors and the way writing operations
are performed; perform J successive writing operations, where
the ² -th writing operation ( Rz±�²�±´J ) changes the variable toÞG¶ . At this moment, the cell state vector corresponds to the
variable vector `V¹x�sLÐÞ��ubY¹ � LÐÞ � b<®/®<®'b�¹�msLÐÞum<f . Then the
cells use the two levels – level 1 and level 2 – to perform
more writes. Totally `Va�PSN)JD|yRuf writes can be performed
by using the two states 1 and 2, after which the cells use the
states 2 and 3 for writing in the same way, and so on.

For example, assume that h7LÜNvbYaiLß×vbdH�LO�	bYJ�Lß� . If
the current cell state vector is `VI	b<Rnb/Rnb/Rnb<Rxb<Rxb�Ivb/RnbdIxf (which is
in the `1a­P´J�f -th generation and corresponds to the variable
vector `VIvb/RnbdIxf ) and the next three writing operations change
the variable to 1, 0 and 1 successively, then the cell state vector
changes as `VI	b<Rxb<Rnb/Rnb/Rnb<Rxb�I	b<RnbdIxf�Ûà`wRnb/Rnb!N�bdNvb<RxbdN�b/Rnb/Rnb<Ruf?Û`wRnb!N�b!N�bdNvb<RxbdN�b/Rnb/Rnb<Ruf?Ûà`YRnbdNvbdNvbdN�b/Rnb!N�b<RxbdNvb<RGf .
B. Analysis of The Code

Theorem 3: The buffer code presented in Code Construc-
tion 2 is correct.

Proof: First, assume HQL�N . To prove the correctness of
the code construction, we use induction to prove the following
assertion: For ²ALáRxbdNvb<®<®/®8bYa­P�J , the ² -th writing operation
leads the cells to a valid cell state vector that correctly
corresponds to the new variable vector.

Consider the case ²^LkR . The first writing operation has
only one possibility: to change the variable to 1. By Code
Construction 2, the cell state `V·u�ubd· � b/®<®<®/b�·'¸vf becomes as
follows: ·<m��[�âLyR , and ·!Õ4LiI for all Ô¨ãL¼J?|¨R . That cell state
is valid and corresponds to the variable vector `VI	b�Ivb/®<®/®'b�I	b<RGf .
So the assertion holds when ²FL�R . That serves as the base
case.

Assume that the assertion holds for all ² �gä , where ä ±a\P°J . Now consider the case ²�L ä . Say that the ä -th writing
operation changes the variable to É , where É LiI or 1. By the
induction assumption, after the ` ä PiRuf -th write, ä PiR cells
are in the state 1, and they all belong to the first ä PSR4|�J
cells (namely, cells µv��b�µ � b<®<®/®'b�µnå)���Y�?m ); therefore, among the
first ä cells, at least one of them is in state 0. If É LËI , theä -th write changes such a cell in state 0 to state 1, so the
number of cells in state 1 becomes ä ; if É L¾R , the ` ä |´J�f -
th cell is changed from 0 to 1, so the number of cells in
state 1 also becomes ä . Clearly, after the ä -th write, all those
cells in state 1 are among the first ä |�J cells. Therefore, the
cell state vector after the ä -th write is valid. Say that after

the ` ä P�RGf -th write, the cell state vector is `:·G�)b�· � b<®<®/®<bd·'¸vf .
Its corresponding variable vector is simply `V¹e�£LØ·dåeb�¹ � L·då<�[�)b<®<®/®<b�¹�m7L�·då<�?m'�?�8f . After the ä -th write, the state of the` ä |ÊJ�f -th cell becomes É , so the corresponding variable vector
is `1¹x�4LS·då<�[�)bY¹ � LS·då<� � b<®<®/®'bY¹�m<���CLi·då<�?m<���)bY¹�m4L É f , which
is the correct variable vector. So the assertion holds when²4L ä . This completes the induction. Therefore, the theorem
holds when HQLSN .

When H�~gN , the code uses the cell levels in a simple “layer
by layer” way, which is clearly also correct.

The number of writes K guaranteed by the buffer code can
be directly derived from Code Construction 2. Thus we have
the following conclusion.

Theorem 4: For the buffer code presented in Code Con-
struction 2, KcLy`VHFP³Ruf'`VaMP�N)JC|¼Ruf�|�J7P�R .

V. ENHANCED BUFFER CODE FOR h?LiNvbYJQLiN AND
GENERAL acbdH

The code presented in Code Construction 2 has a K that
is asymptotically optimal in acb�H . When JºLON , it gives KzL`VHzP¼Ruf'`Va¨P£��f[|�R . In this section, we present a better code
with K�L¯`:H7P�RGf<`1aMPgRGf . In particular, when HzL�N , this code
is strictly optimal.

We first present the new code construction for the case HQLN , and analyze its properties. The construction is then extended
for general H using the “layer-by-layer” approach.

A. Optimal Buffer Code for HzL�N
The new buffer code enhances Code Construction 2. WhenH°LON , it has K�L¾asPiR . So the code allows a�P»R writing

operations.
The new code uses the same method as Code Construction 2

to map cell state vectors of the 1st, 2nd, ®/®<® , `1a¼P½Nxf -th
generations to variable vectors. It adds the following specifi-
cation to Code Construction 2 to handle the first aQP^N writing
operations:Ñ Writing: Let’s say that the current cell state vector`:·/�ubd· � b/®<®/®<b�·<¸vf is `1���)b�� � b<®/®<®<b��#¸vf and it is in the ² -th

generation, where I�±§² � a£PSN . (The corresponding
variable vector is `1¹��QL��%¶r�[��bY¹ � L¯�#¶q� � f .) Say that the
next writing operation is to change the variable’s value
to É . The write is performed as follows:

1) If É LØI and `V� ¶q�[� bY� ¶r� � fæLç`:Ivb/RGf , then change· ¶r�B� – the state of the `V²�|SRGf -th cell – to 1.
2) If É LßI and `1� ¶q�[� b�� ¶q� � fÊLØ`YRnb�I�f , then find the

integer Ô\±�² such that � Õ LSI , and change · Õ to 1.
3) If É LßI and `1� ¶q�[� b�� ¶q� � fÊLØ`YRnb<Ruf , then find the

integer Ôº±i² such that “ �vÕ�L�I and `V²�|��xf�P�Ô is
an even integer”, and change ·8Õ to 1.

4) If É L¯R , change ·<¶r�?� from 0 to 1.
The mapping from the cell state vectors in the `Va°PSRuf -th

generation to the variable vectors is as follows:Ñ Mapping from cell state vectors to variable vectors:
Every valid cell state vector in the `Va@P�RGf -th generation
satisfies this property: Among the a cells, a\PsR of them
are in state 1 and one of them is in state 0.



Given a valid cell state vector in the `1aâP�RGf -th generation,
let’s say that µ�¶ – the ² -th cell – is the unique cell in state
0. The cell state vector is mapped to the variable vector`1¹x��bY¹ � f in the following way:

1) If ²�±´a7PÊN and a7P�² is even, then `V¹ � bY¹ � fEL½`wRxb�I�f .
2) If ²�±³aQP^N and aQP\² is odd, then `1¹ � bY¹ � fEL½`VI	b�I�f .
3) If ²�LSaæP�R , then `V¹ � bY¹ � fELy`YRnb/RGf .
4) If ²�LSa , then `1¹��)b�¹ � fEL½`VI	b<RGf .

The `1asP�Ruf -th writing operation is performed in the fol-
lowing way:Ñ The `Va�PßRGf -th write: Let’s say that after the `1a�PNnf -th write, the cell state vector `V· � bd· � b/®<®/®<b�· ¸ f is`1� � b�� � b<®<®/®<b�� ¸ f . (The corresponding variable vector is`1¹ � LÜ� ¸���� bY¹ � L�� ¸ f .) Say that the `1a£P�RGf -th write

is to change the variable’s value to É . It is performed as
follows:

1) If “ É L¯I and `1�%¸e����bY�%¸	fCL¾`:Ivb<Ruf ” or “ É L©R and`V�#¸e�?�)b��#¸	fFLÜ`VI	b�Ixf ,” then change ·<¸e��� from 0 to
1.

2) If É LËI and `1�%¸e����bY�%¸	f7Lß`YRnbdIxf , then change ·<¸
from 0 to 1.

3) If É LiI and `1� ¸e�?� b�� ¸ fEL½`wRxb<RGf , then let Ô\±´a7PÊN
be the integer such that “ � Õ LSI and a\P^Ô is odd”,
and change · Õ from I to 1.

4) If É LÌR and `1� ¸e�?� b�� ¸ f^Lk`:Ivb<Ruf or `wRnbdIxf , then
let Ôæ±SaºP�N be the integer such that � Õ L»I , and
change ·dÕ from I to 1.

Example 5: Let h?L�N�b�aºLi{vb�HQLSNvbYJQLiN . If the a7P^R7L�è
writing operations change the variable vector as `VI	b�IxfgÛ`VIvb/RGfºÛ `wRxb�Ixf¨Û `VI	b<RufºÛ `YRnb/RGfºÛ `wRnbdIxf , then the cell
state vector changes as `VI	b�IvbdIvbdIvb�I	b�I�f7Ûé`VI	b�I	b<RnbdIvbdIvb�I�f7Û`VIvb/Rnb/Rnb�I	b�I	b�Ixf�Û `VI	b<Rnb/RnbdIvb<Rxb�I�fßÛ `VI	b<Rnb/RnbdIvb<Rxb<RufÜÛ`wRnb/Rnb/Rnb�I	b<Rxb<RGf .
B. Analysis of The Code

The new code has a special structural property, as the
following lemma shows.

Lemma 1: For the new code constructed in this section, for²DL�Ivb<Rxb<®/®<®8bYa£P¼N , let `V·G�ubd· � b/®<®<®/b�·'¸vf be a valid cell state
vector in the ² -th generation. By the code construction, among
the first ²?|gN cells – µ � bdµ � b<®/®<®'bdµ ¶q� � – exactly two of them
are in the state 0. Let µ å and µ � be those two cells. Then,
between ä and H , one is odd and the other is even.

Proof: The proof is by induction on ² . When ²^LØI ,· � L¾· � L©I , so p=1 and HML§N . So the lemma holds when²�L¼I . This serves as the base case.
Assume that when ² � Þ°±ia¨P´N , the lemma holds. Now

consider the case ²ºLÏÞ . The proof for this induction step
is a straightforward check using the rule on writing in the
code construction. For example, consider the following case:
after Þ^PyR writes, the states of µeê and µeê �[� are 0 and 1,
respectively, and the Þ -th write changes the variable to 0. In
this case, the code construction changes the state of µ	ê to 1.
By the induction assumption, after Þ¬P�R writes, there is a cellµ�Õ (Ô�±jÞz|¯R ) whose state is 0 such that between Ô and Þ ,

one is odd and one is even. After the Þ -th write, both µeÕ andµ ê � � are in the state 0, so we can let ä L�Ô and H\LyÞz|gN ;
then between ä and H , one is odd and the other is even; so the
lemma holds. All the other cases can be checked similarly; for
simplicity, we skip the details. That completes the induction.
So the lemma holds for all I�±´²�±³aºP£N .

Theorem 5: The new code constructed in this section is
correct. And it has KcLSaæP�R .

Proof: It is easy to verify that the new code deals with the
first a�P°N writes and the 0-th, 1st, ®/®<® , `1a\P¨Nnf -th generations
of cell state vectors in the same way as Code Construction 2
does, except that the a­PgN writes are performed in a more
specific way. For succinctness, we omit the details of this
simple verification. Now consider the `1a\P´RGf -th write. Based
on Lemma 1, any cell state vector in the `1aQP^Nxf -th generation
has exactly two cells µnåvbdµ � whose states are 0, while betweenä and H one is odd and the other is even. By using this
observation, and by the way the code construction performs
the `Va­P»RGf -th write and maps the `Va­P»RGf -th generation of
cell state vectors to variable vectors, we can easily use a case
by case verification to see that the `1a�P�RGf -th write always
leads the cells to a valid cell state vector that corresponds to
the correct variable vector. So the code is correct. It directly
follows from the code construction that KELgaºP�R .

The above code construction and analysis are for H­L¢N .
When Hi¡ÐN , we can use the cells “level by level” in the
same way as the code in Section IV does. For such a code, K
becomes `:H7P�RGf<`1aMP�Nnf?|SR .
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