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Abstract—NAND flash memories are currently the most widely  that usesO(n log 1) block erasures for moving data amomg
used type of flash memories. In a NAND flash memory, although a plocks. With coding, only one empty auxiliary block is needed,
cell block consists of many pages, to rewrite one page, the wholeand we present a very efficient algorithm based on coding

block needs to be erased and reprogrammed. Block erasures
determine the longevity and efficiency of flash memories. So when over GF(Z) that uses onlyn erasures. We further present a

data is frequently reorganized, which can be characterized as a €oding-based algorithm using at mast — 1 erasures, which
data movement process, how to minimize block erasures becomesis worst-case optimal. Although minimizing erasures for every

an important challenge. In this paper, we show that coding instance is NP hard, both algorithms that use coding achieve

can significantly reduce block erasures for data movement, and 5 anhroximate ratio of two with respect to an optimal solution
present several optimal or nearly optimal algorithms. While the that minimi th b f block
sorting-based non-coding schemes requir®(nlog n) erasures to al minimizes the number of block erasures.

move data amongn blocks, coding-based schemes use onfy(n) There have been multiple recent works on coding for flash
erasures and also optimize the utilization of storage space. memories, including codes for efficient rewriting [6] [8] [12],

error-correcting codes [5], and rank modulation for reliable
cell programming [10] [11]. This paper is the first work on
Flash memories have become the most widely used nasterage coding at the page level instead of the cell level, and
volatile electronic memories. They have two basic typethe topic itself is also distinct from all previous works.
NAND and NOR flash memories [7]. Between them, NAND The rest of the paper is organized as follows. In Section I,
flash is currently used much more often due to its higher date data movement problem is defined, and some important
density. In a NAND flash, floating-gate cells are organized a®tations are introduced. In Section Ill, sorting-based data
blocks Each block is further partitioned into multiplgages movement algorithms are presented, and it is shown that cod-
and every read or write operation accesses a page as a uig-.can help minimize the extra storage requirement for data
Typically, a page has 2 to 4KB of data, and 64 pages formovement. In Section IV, a very efficient algorithm based on
a block [7]. The flash memory has a unigbéock erasure coding overGF(2) is presented, which uses orily erasures
property: although every page can be written individualljor moving data inn blocks. In Section V, a coding-based
(for the first time), to rewrite a page, the whole block musiigorithm is presented, which uses at nibst- 1 erasures and
be erased and then reprogrammed. Every block can endigryorst-case optimal. The NP hardness of minimizing erasures
10* ~ 10° erasures, after which the flash memory no longesr every instance is studied. In Section VI, the conclusions
has guaranteed quality and may break down. Block erasugge presented.
also introduce distortion of the data and reduce efficiency.
Therefore, it is critical to minimize block erasures. For this I[I. TERMS AND CONCEPTS
reason, numerougear levelingtechniques have been used to
balance the erasures of blocks [7].
In a flash memory, data frequently needs to be moved.
Examples include reorganizing file segments, grouping pade€finition1 (DATA MOVEMENT PROBLEM) There aren
of similar access statistics, and many more. To facilitate dd##cks storing data in the flash memory, where every block
movement, a flash translation layer (FTL) is usually usd#sm pages. The blocks are denotedBy ..., B,, and then
in flash file systems to map logical data pages to physida®ges in block; are denoted by; 1, ..., pimfori=1,...,n.
pages [7]. How to minimize block erasures during the datete(i, j) andB(i, j) be two functions:
movement process remains a main challenge. . .
In this paper, we show that coding techniques can sig- g((;’ 1)) ;! E%Z}}z{{llr;ﬁ:{{ll%»
nificantly reduce block erasures for data movement. Besides ) A
erasures, we also consider coding complexity and the exifhe data in page; ; is denoted byD; ; and needs to be moved
storage space needed for data movement. We show that witlte pagep,; ;) p(i i), for (i,j) € {1,...,n} x {1,...,m}.
out coding, at least two empty auxiliary blocks are needed {Glearly, the functions(i, j) andB(i, j) together have to form
facilitate data movement, and present a sorting-based solutipermutation for thenn pages. To avoid trivial cases, we

I. INTRODUCTION

We first define the data movement problem.



permutation sets can be further decomposed into six semi-
cycles: (psj3, P11, P32:P61), (P22, P42); (P52, P33, P1,25
P21, P43, P62); (P13), (P23, P3,1,P4,1), (P51, P63)-

Every semi-cyclecorresponds to a directed cycle in the
transition graph, and evetylock-permutation setorresponds
to a set of directed cycles that enter and leave every vertex
exactly once. It is not a coincidence that thwe pages in the
above example can be partitioned imtgpermutation sets. The
following theorem shows it holds for the general case.

Fig. 1. Data movement with = 6,m = 3. (a) The permutation i ; _
table. The numbers with coordinatés j) are «(i, j), 3(i, j). For example, Theorem 4 The nm pages can be partitioned into block

(x(1,1), B(1,1)) = (3,3), and (x(1,2), B(1,2)) = (2,1). (b) Transition Permutation sets. Therefore, then pages of data can be

graph. (c) The bipartite graph representation. fiht@ick edges are a perfect partitioned intan block-permutation data sets.
matching (a block-permutation set). (d) After removing a perfect matching

from the bipartite graph. Here far=1,...,n, vertexi represents blocig;. Proof: The data movement problem can be represented
by the bipartite graph where every edge represents a page
assume that every block has at least one page whose data neddse data needs to be moved into another block. (See Fig. 1
to be moved to another block.) (c) for an example.) For=1, ..., n, anyi vertices in the top
A number of empty blocks, calleauxiliary blocks can be layer haveim outgoing edges and therefore are connected to
used in the data movement process, and they need to be ergédgasti vertices in the bottom layer. So by Hall's theorem
in the end. The objective is to minimize the total number d@r matching in bipartite graphs [4], the bipartite graph has
block erasures in the data movement process. a perfect matching. The edges of the perfect matching corre-
spond to a block-permutation set. If we remove those edges,
The challenge here is that a block needs to be fully erased get a bipartite graph of degree — 1 for every vertex.
when any of its pages is to be modified. Let us define sonfeee Fig. 1 (c), (d).) With the same argument, we can find
terms that are used throughout the paper. There are two usefubther perfect matching and reduce the bipartite graph to
graph representations for the data movement problem: ttegular degreen — 2. In this way, we partition the:m edges
transition graphand abipartite graph In thetransition graph into m block-permutation sets. ]
G = (V,E), |V| = n vertices represent the data blocks A perfect matching can be found using the Ford-Fulkerson
By,...,By,. If y pages of data need to be moved frdn Algorithm [4] for computing maximum flow in timé)(n m).
to Bj, then there are/ directed edges fronB; to B; in G. So we can partition them pages intom block-permutation
G is a regular directed graph witht outgoing edges and sets in timeO(n n? 2)
m incoming edges for every vertex. In thHapartite graph
H = (V1 UV, E'), Vi and V, each hasn vertices that
represent the: blocks. If y pages of data are moved from In this paper, we focus on the scenario where as few
B; to Bj, there arey directed edges from verteR; € V; to auxiliary blocks as possible are used in the data movement

vertexB € V,. The two graphs are equivalent but are use@focess. In this section, we show that coding techniques can
in d|fferent proofs. minimize the number of auxiliary blocks. Afterwards, we will

study how to use coding to minimize block erasures.

IIl. CODING FORMINIMIZING AUXILIARY BLOCKS

Definition 2 (BLOCK-PERMUTATION SET AND SEMI- A, Data Movement without Coding

CYCLE) A set ofn pages{pyj,, paj,;---+Pn,j,} 18 @block- \wnen coding is not used, data is directly copied from page
permutation setif {a(1,/1),«(2,j2),-.,&(n,ju)} = 4o page. The following simple example shows that in the
(L2, ny I {pLjy,pajpreesPuj,t 18 @ bIOCK- oot case more than one auxiliary block is needed for data
permutatlon set, then the data they originally Store o ement. Note tha; ; denotes the data originally stored in

{D1,j,, D2y, .-, Dy, } — is called a block-permutation o pagep; ;.
data set

Let z € {1,2...,n}. An ordered set of pageSExampleS Letn = m = 2, and let the functiona(i, j) and
(Piy ]o'pllhf" ' Piey,jo ) is a semicycleif for k = B(i,j) be: (a(1,1),8(1,1)) = (1,1), (a(1,2), B(1,2)) =
01 vz2 =1 ol jo) = fiett mod = (2,2),(2(2,1),8(2,1)) = (2,1),(«(2,2),8(2,2)) =

(1,2). Itis simple to verify that without coding, there is no way
Example 3 The data movement problem in Flgexemplifies to move the data as requested with only one auxiliary block.
the construction of the transition and bipartite graphs. THe see that, assume that only one auxiliary blBgkis used.
nm = 18 pages can be partitioned into three block-permutatigkssume that we first erady. At that time,By has to contain
sets:  {p1,1, P22, P3,2:P42, P53, P61} {p12,P21,p33 D11 andD;, (otherwise some data will be lost). Then we write
P43, P52, pérz}, {p1,3, P2,3, 931,941, P51, p6,3}' The block intoB; the dataDM andDm. At this momentB, hasDLl and



D1, By hasD1 1 andD; », andB; hasD; 1 andD, . The data For convenience, let us assume for now that every block
movement is not finished yet; however, we can see that whethes only one page. The results will be naturally extended
we eraseB, or B, next, some data will be lost. So the dat&o the general case. L&y denote the auxiliary block, and
movement fails. It is simple to verify that no feasible solutiotet py denote its page. Fof = 1,...,n, let p; denote the
exists. Therefore, at least two auxiliary blocks are needed. page inB;, and letD; denote the data originally ip;. Let

. o a:{1,...,n} — {1,...,n} be the permutation such that
We now show that two auxiliary blocks are sufficient. Th%i needs to be moved intp (). Let «~! be the inverse
x(1)"

next algorithm operates in a way similar to bubble_sort. And Hermutation ofa. Say that then pages can be partitioned
sorts the data of the: block-permutation data sets in parallelinto t semi-cycles, denoted kg, . .., C;. Every semi-cycleC;

The two auxiliary blocks are denoted tf and By. (1 <i < t) has a special page calleail, defined as follows:
_ if p; is thetail of C;, then for every other page. € C;, j > k.
Algorithm 6 (BUBBLE-SORFBASED DATA MOVEMENT) We use *p” to represent the bit-wise exclusive-OR of data.
Fori=1,...,n—1 The following algorithm consists of two passes: floeward
Forj = 1+_1/ AL ) passand thebackward passlt uses2n erasures. Note that in
CopyB; into By andB; into By,; EraseB; andB;; the algorithm below, whenever some data is to be written into
Fork=1,...,m a page, that data can be efficiently computed from the existing

Let Dy, ;, andD;, j, be the two pages of data By  gata in the flash memory blocks. The detail will be clear later.
and By, respectively, that belong to tfieth block- also note thaty 1 < i < n, D, 1 is the data that needs to
permutation data set. Lgi,;, be the unique page inpe moved into the block that originally contaii.

B; such that some data of theth block-permutation

data set needs to be moved into it. Algorithm 7 (GF(2)-CODING-BASED DATA MOVEMENT)

If a(iz, j») = i (which impliesB(iz, j») = js and  ForRwARD PASS:

(i1, j1) # i), copyD, j, intop; ;,; otherwise, copy  Fori =1,2,...,n do:

Di, j, intopj, ;. _ ) If pi is not the tail of its semi-cycle, writB; & D1,
Write into B them pages of data i, andB;, but not intop;_1; otherwise, writeD; into p;_,. Then, erasé;;
in B;. EraseB, andBj). BACKWARD PASS:

Fori=n,n—1,...,1do:

In the above algorithm, for every block-permutation data WriteDa_l(i) into p;. EraseB; ;.

set, its data is not only sorted in parallel with other block-

permutation data sets, but is also always dispersedhlocks Example 8 Figure 2 gives an example of the execution
(with every block holding one page of its data). The aIgorithrBf Algorithm 7 with n = 8 and t = 2. Here
uses O(n?) erasures. If instead of bubble sorting, we us (1), o(2) «(8)) _ (3,6,8,1,2 5 4,7)
more efficient sorting networks such as the Batcher sorti &ons, que;”i'ti);, (@ 1(1),a"1(2),... og_{(é))’ e
network [2] or the AKS network [1], the number of erasures, = | 7 ¢ » 8 3).) Ti;e Y
can be further reduced t©(nlog?n) and O(nlogn), re- '~/ """~~~

spectively. For simplicity we skip the details.

two semi-cycles are
(P1,p3,ps, p7,ps) and (p2,pe,ps). In Figure 2, each
row is a step of Algorithm7. The numbers are the data in
B. Storage Coding with One Auxiliary Block the blocks. (For convenience, we us¢éo denote datd; in

the figure.) The rightmost column describes the computation

In Algorithm 6, the only function of the auxiliary blocki%, performed for this step, whebg denotes the data i then.

and B;, is to store the data in the data blocks B; when the
data inB;, B; is being swapped. We now show how coding The correctness of Algorithm 7 depends on whether the data
can help reduce the number of auxiliary blocks to one, whigtxitten into a page can always be derived from the existing
is clearly optimal. LetBy denote the only auxiliary block, anddata in the flash memory blocks. Theorem 9 shows this is true.
let po,1, Po2,---,pom denote its pages. For = 1,...,m,

statically store in page the bit-wise exclusive-OR of the Theorem 9. When Algorithm 7 is running, at any moment,

n pages of data in thé-th block-permutation data set. Wey 1 < i < n, if the dataD; is not in then + 1 blocks
make one change in Algorithm 6: when the dataBinB; is By, By,..., B, then there must exist a set of da{®; ©
being swapped, instead of erasing them together, we first ergse, D;, @& Dj,,Dj, ® Dj,,...,Dj,_, ® Dy, Dy} that all exist

B; and write data intd;, then erasé; and write data intd;. in then + 1 blocks. ThereforeD; can be easily obtained by
This is feasible becausdt, always provides enough redundantomputing the bit-wise exclusive-OR of the data in the set.

data. The number of block erasures is of the same order as ) . .
before. Proof: Consider a semi-cycl€; (1 < i < t). Denote its

pages by;,, pi,, - - -, pi,- Without loss of generality (WLOG),

IV. EFFICIENT STORAGE CODING OVER GF(2) assumex(ij) = ijq for j=1,2,...,x — 1, anda(ix) = i1.

In this section, we present a data movement algorithm tHdew imagine a directed cyclé as follows: ‘S hasx vertices,
uses only one auxiliary block arth erasures. The algorithm representing the dafa; , D;,, ..., D;,; there is a directed edge
uses coding oveGF(2) and is very efficient. from D;; to D;;,, for j=1,...,x—1, and a directed edge



l By [ B1 [ By [ B3 [ By 1351 Bg 187138“ Operation l
forward pass

PikG,j)- In the algorithm, every timeB; is erased, write the
data related to th¢-th block-permutation data set infg ; ;).

1] 2] 3 4 [5] 6 [7]8 51504 C : 3

104 2 | 3| 4|5 6 |7]8 5, @ 55 Since every block-permutation set occupies exactly one page

104285 3 1 415/ 6 [7]8 53 © 8 Dy in each block, there will be no conflict in writing.

TO42053D1 4 [5] 6 |78 54 B 07

104295301407 5/ 6 [7]8 05 & 06 V. STORAGE CODING WITH MINIMIZED ERASURES

16426535 1487566 6 [7]8 copy &

16426536146 7/556|6 718 57 @ g In this section, we present an algorithm that uses at most

1$i ;gg gg} ig; ggg g ;gg . 8 copy 9 2n — 1 erasures, which is worst-case optimal. We further show
that minimizing erasures for every instance is NP hard, but our

backward pass

Tod2 5301407 506/67®8 8 5 00,05, D00 D5, algorithm provides a 2-approximation.
TO4205301[4D7506|6|708] |3 [06® 3050 @ 0, @ 03 . . . .
16420530140 7506|6 33 55 @ o4 DOy A. Optimal Solution for Canonical Form Labelling
16426530140 7[506 2 |83 5, D81 D o o
Toih o530 107 ST 8131 550505, 055 The n blocks can .be Iabel_led bB,..., B, in n! different
Tod2 o531 = Te6l 2 1813 5, @ o5 ways. Lety be an integer in{0,1,...,n —2}. We call a
134205 1|7 [6] 2 [8]3 51 labelling of blocks that satisfies the following constraint a
14 . g } ; 2 i g g %0 © & canonical labelling with parametey: “V i € {y+ 1,y +
: : : 2,...,n—=2}andj € {i+2,i+3,...,n}, no data in
Fig. 2. Example execution of Algorithm 7. B; needs to be moved intd;” Trivially, any labelling is

a canonical labelling with parameter — 2. However, it is
) . ] difficult to find a canonical labelling that minimizas

from D;, to D; " Let every directed edge ir§ represent e now present a data-movement algorithm for blocks
the b|t_—W|se excluswe—OR of the data represented by its tWQat have a canonical labelling with parameferit uses one
endpoint vertices. _ _ _ auxiliary blockBy, and uses +y +1 < 2n — 1 erasures. For

Consider theforward passin the algorithm. In this pass, convenience, let us again assume that every block contains
every time some data represented by a verte§ is erased, only one page, and lep;, D;, «, «~! be as defined in the
the data represented by the directed edge entering that VeRgXious section. Let denote the number of bits in a pade.
already exists. So for every vertex fiwhose data has beenThe algorithm can be naturally generalized for the general

property: “the data represented by the edges in this path,jg§oduced in the previous section.
well as the data represented by the starting vertex of the path,

all exist in the blocks.” This is the same condition stated iﬂlgorithm 10 (DATA MOVEMENT WITH LINEAR CODING)
the theorem. This algorithm is for blocks that have a canonical labelling with

When the forward pass ends, there exists such a direc}%ﬂametey €{0,1,...,n—2}.Lety1, Vs, . ..,y be distinct
path of x — 1 edges inS: “the path starts at some vertex ,,n_zero elements in the fie@F (27).

in S and goes through all the other— 1 vertices, and the  grep 1: Fori = 0,1,...,y do: Erase; (fori = 0 there is
data represented by its— 1 edges and by the vertexare |, need to erasey), and write intap; the datay!_, 7/]i(Dk_
all stored in the blocks.” Let's call this path, and denote by  grep 2: Fori — y+1,y+2,...,ndo: Erase§i, and write
u the vertex inS that has an outgoing edge entering into p; the dataD,, 1 ;.

Now consider thebackward passn the algorithm. In this  grep 3: Fori f y,ly —1,...,1 do: EraseB;, and write into
pass, first, the data representedbys written into a block 4 pagep; the dataDaflm.
and the data represented bys erased. In the following data

movement process, every time before the data representedrngorem 11 Algorithm 10 is correct and uses + y + 1 <
an edge ofL is erased, the data represented by the startiﬁg — 1 erasures. (Note that the algorithm assumes that the

vertex of that edge has been written into the blocks. So at Zﬁ)bcks have a canonical labelling with parameter
moment, for every vertex ity whose data has been erased,

there is a directed path i§ leaving it with this property: Proof: We show that each time a blodk; is erased it
“the data represented by the edges in this path, as well as @ossible to generate all data pages using the current data
data represented by the end vertex of the path, all exist in thfitten in the othern pages. Denote by;, 0 < i < n, the
blocks.” This is the same condition stated in the theorem. $@rrent data written in each page, which is a linear combina-
the conclusion holds. B tion of then data pages. The linear combination written in
Algorithm 7 can be easily extended to the case whereeach page can be represented by a matrix multiplication
block hasm > 1 pages. Use the algorithm to process the T T
block-permutation data sets in parallel, in the same way asH (D1, D2,...,Dn)" = (80, -+, 8i-1,8iy1,- -+, 0n) -

Algorithm 6. Specifically, fori =1,...,nandj=1,...,m, . , _ , .
let d te the uniaue page B such that some data Whenr is greater than what is needed by Algorithm 10 (which is nearly
el pik(,j deno unique page By su always true in practice), we can partition each page into bit strings of an

in the j-th block-permutation data set needs to be moved indppropriate length, and apply the algorithm to the strings in parallel.



The matrix H defines the linear combination of data pagedata paged;, 1 < i < n, and in particular the data page

written in each page. Consider the first step when the blog,jgx_1

B; is erased. The data written imy,, for 0 < h <i—1, is
5 = Y, YIDy, and the data written ipy, fori+1 < h <

n, is &, = Dj,. The matrix representation of this problem is Sy=73"_,

1 1 1 Dy )
Y1 72 Vn D, :

¥ v Ya Ds 51

SR ol | s
Yyt it Dy_1 :

Op—iyxi  In—i Dy, o

where0,_;); is the zero matrix of sizeén — i) x i, and 1, _;
is the unit matrix of sizgn — i) x (n —i). Since this matrix

(i)
Fori =y,y—1,...,1, after erasing the-th block at the
third step, the data written iy, for 0 < h < i—1, is

yl,’%Dk, and the data written ipy, fori +1 < h <

n, is c_Sh = Dyp-1ny- Therefore, the matrix representing this
equations is
1 1 Vn D; 5o
o7 2 D, ;
i 7 Vo Ds i1
SRR : 5i11
H vt ]| Da :
Py Dy on

is invertible it is possible to generate all data pages and Where P,,_; is a matrix consisting ofz —i row vectors of

particular the required data that has to be writterpin
Fori = y+1,y+2,...,n, after erasing the-th block
at the second step, the data writtengp, for 0 < h < y,
is &, = Y, VI Dy. The data written intgpy, for y +1 <
h <i-1,is 6, = Dy-1(,), and the data written i, for
i+1<h<m,isd,

as follows:
11y D, %
v v D3 51
R : Oit1
Wy v Dy :
Ay D on

where A, _; is a matrix of size(n —y — 1) x n defined as
follows:

1) The h-th row of the matrixA,_;for1 <h <i—y—1
is an unit vector of lengthn containing an one in its
(a1 (y + h))-th entry.

2) The h-th row of the matrixA,_; fori—y < h <

n —y — 1 is an unit vector that contains an one in it

(y + h+1)-st entry.
Since there are no pages that are moved from bydio block
B;, wherey+1 <i<n—-2andi+2 < j < n, the first
i —y — 1 row vectors of the matri¥,,_; are different than the
lastn — i last row vectors of the matri¥,,_;. Therefore, the

length n, and itsh-th row vector,1 < h < n — 1, is a unit
vector of lengthiz which has an one in its =1 (i + 1)-th entry
and zero elsewhere. As before, all unit vectors in the matrix
P,_; are different from each other. Therefore the matrix on
the left hand side is invertible, and it is possible to generate

= D;. These equations are representegl| gata paged;, 1 <i < n, and the data pag@ml(i)- m

The following theorem shows an interesting property of
canonical labelling. Note that since every block has some
data that needs to be moved into it from some other block,
every block needs to be erased at least once. So atieast
erasures (including erasing the auxiliary block) are needed in
any case.

Theorem 12 Assume r is sufficiently large. Lety €
{0,1,---,n —2}. There is a data-movement solution using
n+ y + 1 erasures if and only if there is a canonical block
labelling with parametey.

Proof: First, assume that there is a data-movement solu-
tion usingn + y + 1 erasures. Since every block (including the
uxiliary block) is erased at least once, there are at leasy
locks that are erased only once in the solution. Rick y
blocks erased only once and label thenBas, B2, ..., Bx
this way: “in the solution, whery +1 < i < j < n, B;
is erased befoer." Label the othery blocks asBy, ..., By
arbitrarily. Let us use contradiction to prove that no dat& jn
needs to be moved intB;, wherei > y+1, j > i+ 2.

matrix A, ; contains a set of unit vectors where all the vectors o ;me some data iB; needs to be moved intB:. After
i

are different from each other. If we calculate the determinagt
1

of the matrix on the left hand side according to the rows
the matrix A, _; then we remain with arfy +1) x (y +1)
matrix of the form:

11 1---1 1
Yi Yi Yis Vi Yipa
2 .2 .2 2
Yi, Vi Yig 7/l'y yiy+l
Vv oy Yy
Vi, Vi Vi yiy yiy+1

is erased, that data must be written iBpbecauseB; is
Frased only once. When the solution eraBgs; (which is
before erasingB;), the data mentioned above exists in both
B; and B;. However, note that at the end of the solution all
nm pages are located in their designated location. But, it is
impossible to generate them using only: — 1 data pages, so
there is a contradiction. Therefore, we have found a canonical
labelling with parameter;. The other direction of the proof
comes from the existence of Algorithm 10. [ ]

We can easily make Algorithm 10 u®e — 1 erasures by
letting y = n — 2 and using an arbitrary block labelling. On

and its determinant is not zero. Therefore, the matrix on tlige other hand2n — 1 erasures are necessary in the worst case.
left hand side is invertible, and it is possible to generate dlb see that, consider an instance where every block has some



of t vertices — witht maximized — theMAXIMUM SEMI-
INDEPENDENTSET of G’. For all v € V;, let N(v) denote
the neighbors ob in G.

CLAIM 1: “There is a maximum semi-independent set of
G’ whereV v € Vj, either all three corresponding vertices
v1 € V1,00 € Vp,v3 € V3 are in the set, or none of them is
in the set. What is more, ib,,v,,v3 are in the set, then no
vertex in{wq, wp, wz|w € N(v)} is in the set.”

Fig. 3. NP hardness of the data movement problem. (a) A simple undirectedTo prove CLAIM 1, let (al, a,..., ﬂt) denote a maximum

graphGy. (b) The corresponding regular directed graph Here every edge i /
between two different vertices has arrows on both sides, representing the 1$\'NeomI mdependent SeMSS of G'. (Note that the order of the

directed edges of opposite directions between those two vertices. There Me4tices in the set matters.) Consider two cases:
symbol xi beside every directed loop, representingarallel loops of that Case 1: One 0{01,02,03} is in the MSS ofG’. WLOG,

vertex. say it is v;. At most two vertices — say and ¢ — in

{w1,wy, wslw € N(v)} can be in the MSS, because oth-
data that needs to be moved into every other block, wherge@yise due to the bi-directional edges between themwnd
canonical labelling must havg = n — 2. So Algorithm 10 is  there would be no way to place them in the MSS. Let us
worst-case optimal. removeb, ¢ from the MSS and add,, v right afterv; in the
MSS. It is simple to see that we get another MSS.

Case 2: Two of vy, v;,v3} are in the MSS of5’. WLOG,

A specific instance of the data movement problem mayy they arev; and v,. At most one vertex — say — in
require less than — 1 erasures. So it is interesting to find{s,, w,, ws|w € N(v)} can be in the MSS, for a similar
an algorithm that minimizes the number of erasures for eVel¥ason as Case 1. In the MSS, let us rerﬂﬂ\movevz right
instance. The following theorem shows that this is NP hardhehindv,, and adds right behindo,. Again, we get an MSS.

So in this way, we can easily convert any MSS into an MSS
Theorem 13 For the data movement problem, it is NP hard tgatisfying the conditions ilCLAIM 1. SoCLAIM 1 is true.
minimize the number of erasures for every given instance. CLAIM 2: “A set of vertices{w(1),w(2),...,w(k)} is

maximum independent set @, if and only if the set

. . a
Pr_oqf:_lt_ has been shown in Theore_m 12 and its pro_cgf vertices (w(1)1, w(1)a, w(1)s,w(2)1, w(2)2, w(2)s, ...,
that minimizing the number of erasures is as hard as flndlt(:}qk)l w(k), w(k)3) is an MSS ofG'." It is simple to see
a canonical block labelling with a minimized paramegerSo .+ this is 2. consequence GLAIM 1.
we just need to show that finding a canonical labelling with ¢ given a canonical labelling with minimized parameer

minimizedy is NP hard. We prove it by a reduction from th&, yhe gata movement problem wiéf as the transition graph,
NP hardMAXIMUM INDEPENDENTSET problem. in polynomial time we can convert it into an MSS @f, from

Let Go = (Vo,Eo) be any simple undirected graph. Leia¢ into an MSS of3’ satisfying the conditions oELAIM 1,
d(v) denote the degree of vertex € Vjp and letA = 54 finally into a maximum independent set®f So it is NP
maxycy, d(v) denote the maximum degree G5. We build 314 {6 find a canonical labelling with minimized parameter
a regular directed grap8’ = (V1 UV, U V3, E') as follows. "4 minimizing the number of erasures is NP hard. m
Let [Vo| = [Vi| = |Va| = |V3]. Forallo € Vy, there are ™ rperefore, there is no polynomial time data-movement
three corresponding verticeg € V3,02 € V2,03 € V3. If - 5195rithm that minimizes erasures for every instance unless
there is an undirected edge betweer € Vo in Go, then  p_ Np However, since every algorithm uses at least 1
there are two directed edges of opposite directions betw?e”erasures, and Algorithm 10 can easily achixe- 1 erasures

andvj for i_= 1,2,3andj = 1,2,3.. For.allv.e Vo, there are (by settingy = n — 2), we see that the algorithm is a 2-
also two directed edges of opposite directions betwaemr, approximation algorithm.

and betweerv,,v;. Add some loops to the vertices i@’
to make all vertices have the same out-degree and in-degree VI. CONCLUDING REMARKS

3A +2. See Fig. 3 for an example. In this paper, we study the data movement problem for
The graphG’ naturally corresponds to a data movemen{aND flash memories. We present sorting-based algorithms
problem withn = 3|Vo| andm = 3A 42, whereG' is its that do not use coding, which can use as fewCd® log )
transition graph (The transition graph is defined in Section Il.)srasures for moving data in blocks. We show that coding
Finding a canonical block labelling with minimized paramet%chniques can not only minimize the number of auxiliary
y for this data movement problem is equivalent to findingjocks, but also minimize the number of erasuresOior).
t =n — y vertices — with the value of maximized —inG’, | particular, we present a solution based on coding over
GF(2) that uses onl2n erasures. We further present a linear-
coding solution that uses at madt — 1 erasures, which is
such that fori = 1,2,...,t—2andj =i+2,i+3,...,t, worst-case optimal. Both solutions based on coding achieve
there is no directed edge fromy to a;. We call such a set an approximation ratio of two for block erasures.

B. Optimization for All Instances

al/a2/' . 'Iatl



The data movement problem studied here can have numer-
ous practical variations. In one variation, the data to be moved
into each block is specified, but the order in that block is
allowed to be arbitrary. The same algorithms in this paper can
solve this problem well by first assigning an arbitrary order. In
another variation, we may only specify which group of data
needs to be moved into the same block, without specifying
which block. Furthermore, the final data may be a function
of the data originally stored in the blocks. Such variations
require new solutions for optimal performance. They remain
as our future research topics.
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