
Storage Coding for Wear Leveling in Flash Memories
Anxiao (Andrew) Jiang∗ Robert Mateescu† Eitan Yaakobi‡

Jehoshua Bruck† Paul H. Siegel‡ Alexander Vardy‡ Jack K. Wolf‡

∗Department of Computer Science †California Institute of Technology ‡Electrical and Computer Engineering
Texas A&M University 1200 E California Blvd., Mail Code 136-93 University of California, San Diego

College Station, TX 77843, U.S.A. Pasadena, CA 91125, U.S.A. La Jolla, CA 92093, U.S.A.
ajiang@cs.tamu.edu {mateescu,bruck}@paradise.caltech.edu {eyaakobi,psiegel,avardy,jwolf}@ucsd.edu

Abstract—NAND flash memories are currently the most widely
used type of flash memories. In a NAND flash memory, although a
cell block consists of many pages, to rewrite one page, the whole
block needs to be erased and reprogrammed. Block erasures
determine the longevity and efficiency of flash memories. So when
data is frequently reorganized, which can be characterized as a
data movement process, how to minimize block erasures becomes
an important challenge. In this paper, we show that coding
can significantly reduce block erasures for data movement, and
present several optimal or nearly optimal algorithms. While the
sorting-based non-coding schemes requireO(n log n) erasures to
move data amongn blocks, coding-based schemes use onlyO(n)
erasures and also optimize the utilization of storage space.

I. I NTRODUCTION

Flash memories have become the most widely used non-
volatile electronic memories. They have two basic types:
NAND and NOR flash memories [7]. Between them, NAND
flash is currently used much more often due to its higher data
density. In a NAND flash, floating-gate cells are organized as
blocks. Each block is further partitioned into multiplepages,
and every read or write operation accesses a page as a unit.
Typically, a page has 2 to 4KB of data, and 64 pages form
a block [7]. The flash memory has a uniqueblock erasure
property: although every page can be written individually
(for the first time), to rewrite a page, the whole block must
be erased and then reprogrammed. Every block can endure
104 ∼ 105 erasures, after which the flash memory no longer
has guaranteed quality and may break down. Block erasures
also introduce distortion of the data and reduce efficiency.
Therefore, it is critical to minimize block erasures. For this
reason, numerouswear levelingtechniques have been used to
balance the erasures of blocks [7].

In a flash memory, data frequently needs to be moved.
Examples include reorganizing file segments, grouping pages
of similar access statistics, and many more. To facilitate data
movement, a flash translation layer (FTL) is usually used
in flash file systems to map logical data pages to physical
pages [7]. How to minimize block erasures during the data
movement process remains a main challenge.

In this paper, we show that coding techniques can sig-
nificantly reduce block erasures for data movement. Besides
erasures, we also consider coding complexity and the extra
storage space needed for data movement. We show that with-
out coding, at least two empty auxiliary blocks are needed to
facilitate data movement, and present a sorting-based solution

that usesO(n log n) block erasures for moving data amongn
blocks. With coding, only one empty auxiliary block is needed,
and we present a very efficient algorithm based on coding
over GF(2) that uses only2n erasures. We further present a
coding-based algorithm using at most2n− 1 erasures, which
is worst-case optimal. Although minimizing erasures for every
instance is NP hard, both algorithms that use coding achieve
an approximate ratio of two with respect to an optimal solution
that minimizes the number of block erasures.

There have been multiple recent works on coding for flash
memories, including codes for efficient rewriting [6] [8] [12],
error-correcting codes [5], and rank modulation for reliable
cell programming [10] [11]. This paper is the first work on
storage coding at the page level instead of the cell level, and
the topic itself is also distinct from all previous works.

The rest of the paper is organized as follows. In Section II,
the data movement problem is defined, and some important
notations are introduced. In Section III, sorting-based data
movement algorithms are presented, and it is shown that cod-
ing can help minimize the extra storage requirement for data
movement. In Section IV, a very efficient algorithm based on
coding overGF(2) is presented, which uses only2n erasures
for moving data inn blocks. In Section V, a coding-based
algorithm is presented, which uses at most2n− 1 erasures and
is worst-case optimal. The NP hardness of minimizing erasures
for every instance is studied. In Section VI, the conclusions
are presented.

II. T ERMS AND CONCEPTS

We first define the data movement problem.

Definition 1 (DATA MOVEMENT PROBLEM) There are n
blocks storing data in the flash memory, where every block
hasm pages. The blocks are denoted byB1, . . . , Bn, and them
pages in blockBi are denoted bypi,1, . . . , pi,m for i = 1, . . . , n.
Letα(i, j) andβ(i, j) be two functions:

α(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , n};
β(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , m}.

The data in pagepi, j is denoted byDi, j and needs to be moved
into pagepα(i, j),β(i, j), for (i, j) ∈ {1, . . . , n} × {1, . . . , m}.
(Clearly, the functionsα(i, j) andβ(i, j) together have to form
a permutation for themn pages. To avoid trivial cases, we

1 2 3 4 5 6

1 2 3 4 5 6(c)

3,3

2,1

1,3

5,3

5,2

5,1

i=1

4,1

4,2

3,1

4,3

6,1

1,2

2,3

2,2

6,2

6,3

3,2

1,1

2 3 4 5 6

j=1

2

3

(a) (b) 1 2

6

45

3

(d)

1 2 3 4 5 6

1 2 3 4 5 6

Fig. 1. Data movement withn = 6, m = 3. (a) The permutation
table. The numbers with coordinates(i, j) areα(i, j), β(i, j). For example,
(α(1, 1), β(1, 1)) = (3, 3), and (α(1, 2), β(1, 2)) = (2, 1). (b) Transition
graph. (c) The bipartite graph representation. Then thick edges are a perfect
matching (a block-permutation set). (d) After removing a perfect matching
from the bipartite graph. Here fori = 1, . . . , n, vertex i represents blockBi.

assume that every block has at least one page whose data needs
to be moved to another block.)

A number of empty blocks, calledauxiliary blocks, can be
used in the data movement process, and they need to be erased
in the end. The objective is to minimize the total number of
block erasures in the data movement process.

The challenge here is that a block needs to be fully erased
when any of its pages is to be modified. Let us define some
terms that are used throughout the paper. There are two useful
graph representations for the data movement problem: the
transition graphand abipartite graph. In the transition graph
G = (V, E), |V| = n vertices represent then data blocks
B1, . . . , Bn. If y pages of data need to be moved fromBi
to B j, then there arey directed edges fromBi to B j in G.
G is a regular directed graph withm outgoing edges and
m incoming edges for every vertex. In thebipartite graph
H = (V1 ∪ V2, E′), V1 and V2 each hasn vertices that
represent then blocks. If y pages of data are moved from
Bi to B j, there arey directed edges from vertexBi ∈ V1 to
vertex B j ∈ V2. The two graphs are equivalent but are used
in different proofs.

Definition 2 (BLOCK-PERMUTATION SET AND SEMI-
CYCLE) A set of n pages{p1, j1 , p2, j2 , . . . , pn, jn} is a block-
permutation set if {α(1, j1),α(2, j2), . . . ,α(n, jn)} =
{1, 2, . . . , n}. If {p1, j1 , p2, j2 , . . . , pn, jn} is a block-
permutation set, then the data they originally store –
{D1, j1 , D2, j2 , . . . , Dn, jn} – is called a block-permutation
data set.

Let z ∈ {1, 2, . . . , n}. An ordered set of pages
(pi0 , j0 , pi1 , j1 , . . . , piz−1 , jz−1) is a semi-cycle if for k =
0, 1, . . . , z− 1, α(ik, jk) = ik+1 mod z.

Example 3 The data movement problem in Fig.1 exemplifies
the construction of the transition and bipartite graphs. The
nm = 18 pages can be partitioned into three block-permutation
sets: {p1,1, p2,2, p3,2,p4,2, p5,3, p6,1}, {p1,2, p2,1, p3,3,
p4,3, p5,2, p6,2}, {p1,3, p2,3, p3,1,p4,1, p5,1, p6,3}. The block

permutation sets can be further decomposed into six semi-
cycles: (p5,3, p1,1, p3,2,p6,1), (p2,2, p4,2); (p5,2, p3,3, p1,2,
p2,1, p4,3, p6,2); (p1,3), (p2,3, p3,1,p4,1), (p5,1, p6,3).

Every semi-cyclecorresponds to a directed cycle in the
transition graph, and everyblock-permutation setcorresponds
to a set of directed cycles that enter and leave every vertex
exactly once. It is not a coincidence that thenm pages in the
above example can be partitioned intom permutation sets. The
following theorem shows it holds for the general case.

Theorem 4 The nm pages can be partitioned intom block-
permutation sets. Therefore, thenm pages of data can be
partitioned intom block-permutation data sets.

Proof: The data movement problem can be represented
by the bipartite graph, where every edge represents a page
whose data needs to be moved into another block. (See Fig. 1
(c) for an example.) Fori = 1, . . . , n, any i vertices in the top
layer haveim outgoing edges and therefore are connected to
at leasti vertices in the bottom layer. So by Hall’s theorem
for matching in bipartite graphs [4], the bipartite graph has
a perfect matching. The edges of the perfect matching corre-
spond to a block-permutation set. If we remove those edges,
we get a bipartite graph of degreem − 1 for every vertex.
(See Fig. 1 (c), (d).) With the same argument, we can find
another perfect matching and reduce the bipartite graph to
regular degreem− 2. In this way, we partition thenm edges
into m block-permutation sets.

A perfect matching can be found using the Ford-Fulkerson
Algorithm [4] for computing maximum flow in timeO(n2m).
So we can partition thenm pages intom block-permutation
sets in timeO(n2m2).

III. C ODING FORM INIMIZING AUXILIARY BLOCKS

In this paper, we focus on the scenario where as few
auxiliary blocks as possible are used in the data movement
process. In this section, we show that coding techniques can
minimize the number of auxiliary blocks. Afterwards, we will
study how to use coding to minimize block erasures.

A. Data Movement without Coding

When coding is not used, data is directly copied from page
to page. The following simple example shows that in the
worst case, more than one auxiliary block is needed for data
movement. Note thatDi, j denotes the data originally stored in
the pagepi, j.

Example 5 Let n = m = 2, and let the functionsα(i, j) and
β(i, j) be: (α(1, 1), β(1, 1)) = (1, 1), (α(1, 2), β(1, 2)) =
(2, 2), (α(2, 1), β(2, 1)) = (2, 1), (α(2, 2), β(2, 2)) =
(1, 2). It is simple to verify that without coding, there is no way
to move the data as requested with only one auxiliary block.
To see that, assume that only one auxiliary blockB0 is used.
Assume that we first eraseB1. At that time,B0 has to contain
D1,1 andD1,2 (otherwise some data will be lost). Then we write
into B1 the dataD1,1 andD2,2. At this moment,B0 hasD1,1 and

D1,2, B1 hasD1,1 andD2,2, andB2 hasD2,1 andD2,2. The data
movement is not finished yet; however, we can see that whether
we eraseB0 or B2 next, some data will be lost. So the data
movement fails. It is simple to verify that no feasible solution
exists. Therefore, at least two auxiliary blocks are needed.

We now show that two auxiliary blocks are sufficient. The
next algorithm operates in a way similar to bubble sort. And it
sorts the data of them block-permutation data sets in parallel.
The two auxiliary blocks are denoted byB0 and B′0.

Algorithm 6 (BUBBLE-SORT-BASED DATA MOVEMENT)
For i = 1, . . . , n− 1

For j = i + 1, . . . , n
CopyBi into B0 andB j into B′0; EraseBi andB j;
For k = 1, . . . , m

Let Di1 , j1 andDi2 , j2 be the two pages of data inB0
and B′0, respectively, that belong to thek-th block-
permutation data set. Letpi, j3 be the unique page in
Bi such that some data of thek-th block-permutation
data set needs to be moved into it.
If α(i2, j2) = i (which impliesβ(i2, j2) = j3 and
α(i1, j1) 6= i), copyDi2 , j2 into pi, j3 ; otherwise, copy
Di1 , j1 into pi, j3 .

Write into B j them pages of data inB0 andB′0 but not
in Bi. EraseB0 andB′0.

In the above algorithm, for every block-permutation data
set, its data is not only sorted in parallel with other block-
permutation data sets, but is also always dispersed inn blocks
(with every block holding one page of its data). The algorithm
uses O(n2) erasures. If instead of bubble sorting, we use
more efficient sorting networks such as the Batcher sorting
network [2] or the AKS network [1], the number of erasures
can be further reduced toO(n log2 n) and O(n log n), re-
spectively. For simplicity we skip the details.

B. Storage Coding with One Auxiliary Block

In Algorithm 6, the only function of the auxiliary blocksB0
and B′0 is to store the data in the data blocksBi , B j when the
data in Bi , B j is being swapped. We now show how coding
can help reduce the number of auxiliary blocks to one, which
is clearly optimal. LetB0 denote the only auxiliary block, and
let p0,1, p0,2, . . . , p0,m denote its pages. Fork = 1, . . . , m,
statically store in pagep0,k the bit-wise exclusive-OR of the
n pages of data in thek-th block-permutation data set. We
make one change in Algorithm 6: when the data inBi , B j is
being swapped, instead of erasing them together, we first erase
Bi and write data intoBi, then eraseB j and write data intoB j.
This is feasible becauseB0 always provides enough redundant
data. The number of block erasures is of the same order as
before.

IV. EFFICIENT STORAGE CODING OVER GF(2)
In this section, we present a data movement algorithm that

uses only one auxiliary block and2n erasures. The algorithm
uses coding overGF(2) and is very efficient.

For convenience, let us assume for now that every block
has only one page. The results will be naturally extended
to the general case. LetB0 denote the auxiliary block, and
let p0 denote its page. Fori = 1, . . . , n, let pi denote the
page inBi, and let Di denote the data originally inpi. Let
α : {1, . . . , n} → {1, . . . , n} be the permutation such that
Di needs to be moved intopα(i). Let α−1 be the inverse
permutation ofα. Say that then pages can be partitioned
into t semi-cycles, denoted byC1, . . . , Ct. Every semi-cycleCi
(1 ≤ i ≤ t) has a special page calledtail, defined as follows:
if p j is thetail of Ci, then for every other pagepk ∈ Ci, j > k.

We use “⊕” to represent the bit-wise exclusive-OR of data.
The following algorithm consists of two passes: theforward
passand thebackward pass. It uses2n erasures. Note that in
the algorithm below, whenever some data is to be written into
a page, that data can be efficiently computed from the existing
data in the flash memory blocks. The detail will be clear later.
Also note that∀ 1 ≤ i ≤ n, Dα−1(i) is the data that needs to
be moved into the block that originally containsDi.

Algorithm 7 (GF(2)-CODING-BASED DATA MOVEMENT)
FORWARD PASS:
For i = 1, 2, . . . , n do:

If pi is not the tail of its semi-cycle, writeDi ⊕Dα−1(i)
into pi−1; otherwise, writeDi into pi−1. Then, eraseBi;

BACKWARD PASS:
For i = n, n− 1, . . . , 1 do:

Write Dα−1(i) into pi. EraseBi−1.

Example 8 Figure 2 gives an example of the execution
of Algorithm 7 with n = 8 and t = 2. Here
(α(1),α(2), . . . ,α(8)) = (3, 6, 8, 1, 2, 5, 4, 7).
(Consequently, (α−1(1),α−1(2), . . . ,α−1(8)) =
(4, 5, 1, 7, 6, 2, 8, 3).) The two semi-cycles are
(p1, p3, p8, p7, p4) and (p2, p6, p5). In Figure 2, each
row is a step of Algorithm7. The numbers are the data in
the blocks. (For convenience, we usei to denote dataDi in
the figure.) The rightmost column describes the computation
performed for this step, whereδi denotes the data inpi then.

The correctness of Algorithm 7 depends on whether the data
written into a page can always be derived from the existing
data in the flash memory blocks. Theorem 9 shows this is true.

Theorem 9. When Algorithm 7 is running, at any moment,
∀ 1 ≤ i ≤ n, if the dataDi is not in the n + 1 blocks
B0, B1, . . . , Bn, then there must exist a set of data{Di ⊕
D j1 , D j1 ⊕D j2 , D j2 ⊕D j3 , . . . , D jk−1

⊕Dk , Dk} that all exist
in the n + 1 blocks. Therefore,Di can be easily obtained by
computing the bit-wise exclusive-OR of the data in the set.

Proof: Consider a semi-cycleCi (1 ≤ i ≤ t). Denote its
pages bypi1 , pi2 , . . . , pix . Without loss of generality (WLOG),
assumeα(i j) = i j+1 for j = 1, 2, . . . , x− 1, andα(ix) = i1.
Now imagine a directed cycleS as follows: “S hasx vertices,
representing the dataDi1 , Di2 , . . . , Dix ; there is a directed edge
from Di j to Di j+1 for j = 1, . . . , x− 1, and a directed edge

B0 B1 B2 B3 B4 B5 B6 B7 B8 Operation

forward pass
1 2 3 4 5 6 7 8 δ1 ⊕ δ4

1⊕ 4 2 3 4 5 6 7 8 δ2 ⊕ δ5
1⊕ 4 2⊕ 5 3 4 5 6 7 8 δ3 ⊕ δ0 ⊕ δ4
1⊕ 4 2⊕ 5 3⊕ 1 4 5 6 7 8 δ4 ⊕ δ7
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5 6 7 8 δ5 ⊕ δ6
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7 8 copy δ6
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7 8 δ7 ⊕ δ8
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7⊕ 8 8 copy δ8
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7⊕ 8 8

backward pass
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7⊕ 8 8 δ7 ⊕ δ6 ⊕ δ3 ⊕ δ0 ⊕ δ2
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7⊕ 8 3 δ6 ⊕ δ3 ⊕ δ0 ⊕ δ2 ⊕ δ8
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 8 3 δ5 ⊕ δ4 ⊕ δ1
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 2 8 3 δ4 ⊕ δ1 ⊕ δ6
1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 6 2 8 3 δ3 ⊕ δ0 ⊕ δ2 ⊕ δ8
1⊕ 4 2⊕ 5 3⊕ 1 7 6 2 8 3 δ2 ⊕ δ8
1⊕ 4 2⊕ 5 1 7 6 2 8 3 δ1 ⊕ δ6
1⊕ 4 5 1 7 6 2 8 3 δ0 ⊕ δ3

4 5 1 7 6 2 8 3

Fig. 2. Example execution of Algorithm 7.

from Dix to Di1 .” Let every directed edge inS represent
the bit-wise exclusive-OR of the data represented by its two
endpoint vertices.

Consider theforward passin the algorithm. In this pass,
every time some data represented by a vertex inS is erased,
the data represented by the directed edge entering that vertex
already exists. So for every vertex inS whose data has been
erased, there is a directed path inS entering it with this
property: “the data represented by the edges in this path, as
well as the data represented by the starting vertex of the path,
all exist in the blocks.” This is the same condition stated in
the theorem.

When the forward pass ends, there exists such a directed
path of x − 1 edges inS: “the path starts at some vertexv
in S and goes through all the otherx − 1 vertices, and the
data represented by itsx− 1 edges and by the vertexv are
all stored in the blocks.” Let’s call this pathL, and denote by
u the vertex inS that has an outgoing edge enteringv.

Now consider thebackward passin the algorithm. In this
pass, first, the data represented byu is written into a block
and the data represented byv is erased. In the following data
movement process, every time before the data represented by
an edge ofL is erased, the data represented by the starting
vertex of that edge has been written into the blocks. So at any
moment, for every vertex inS whose data has been erased,
there is a directed path inS leaving it with this property:
“the data represented by the edges in this path, as well as the
data represented by the end vertex of the path, all exist in the
blocks.” This is the same condition stated in the theorem. So
the conclusion holds.

Algorithm 7 can be easily extended to the case where a
block hasm ≥ 1 pages. Use the algorithm to process them
block-permutation data sets in parallel, in the same way as
Algorithm 6. Specifically, fori = 1, . . . , n and j = 1, . . . , m,
let pi,k(i, j) denote the unique page inBi such that some data
in the j-th block-permutation data set needs to be moved into

pi,k(i, j). In the algorithm, every timeBi is erased, write the
data related to thej-th block-permutation data set intopi,k(i, j).
Since every block-permutation set occupies exactly one page
in each block, there will be no conflict in writing.

V. STORAGE CODING WITH M INIMIZED ERASURES

In this section, we present an algorithm that uses at most
2n− 1 erasures, which is worst-case optimal. We further show
that minimizing erasures for every instance is NP hard, but our
algorithm provides a 2-approximation.

A. Optimal Solution for Canonical Form Labelling

The n blocks can be labelled byB1, . . . , Bn in n! different
ways. Let y be an integer in{0, 1, . . . , n − 2}. We call a
labelling of blocks that satisfies the following constraint a
canonical labelling with parametery: “∀ i ∈ {y + 1, y +
2, . . . , n − 2} and j ∈ {i + 2, i + 3, . . . , n}, no data in
B j needs to be moved intoBi.” Trivially, any labelling is
a canonical labelling with parametern − 2. However, it is
difficult to find a canonical labelling that minimizesy.

We now present a data-movement algorithm for blocks
that have a canonical labelling with parametery. It uses one
auxiliary blockB0, and usesn + y + 1 ≤ 2n− 1 erasures. For
convenience, let us again assume that every block contains
only one page, and letpi , Di ,α,α−1 be as defined in the
previous section. Letr denote the number of bits in a page.1

The algorithm can be naturally generalized for the general
case, where every block hasm ≥ 1 pages, in the same way
introduced in the previous section.

Algorithm 10 (DATA MOVEMENT WITH L INEAR CODING)
This algorithm is for blocks that have a canonical labelling with
parametery ∈ {0, 1, . . . , n− 2}. Letγ1, γ2, . . . , γn be distinct
non-zero elements in the fieldGF(2r).

STEP 1: For i = 0, 1, . . . , y do: EraseBi (for i = 0 there is
no need to eraseB0), and write intopi the data∑n

k=1 γi
kDk.

STEP 2: For i = y + 1, y + 2, . . . , n do: EraseBi, and write
into pi the dataDα−1(i).

STEP 3: For i = y, y− 1, . . . , 1 do: EraseBi, and write into
the pagepi the dataDα−1(i).

Theorem 11 Algorithm 10 is correct and usesn + y + 1 ≤
2n − 1 erasures. (Note that the algorithm assumes that the
blocks have a canonical labelling with parametery.)

Proof: We show that each time a blockBi is erased it
is possible to generate alln data pages using the current data
written in the othern pages. Denote byδi, 0 ≤ i ≤ n, the
current data written in each page, which is a linear combina-
tion of the n data pages. The linear combination written in
each page can be represented by a matrix multiplication

H · (D1, D2, . . . , Dn)T = (δ0, . . . , δi−1, δi+1, . . . , δn)T .

1When r is greater than what is needed by Algorithm 10 (which is nearly
always true in practice), we can partition each page into bit strings of an
appropriate length, and apply the algorithm to the strings in parallel.

The matrix H defines the linear combination of data pages
written in each page. Consider the first step when the block
Bi is erased. The data written inph, for 0 ≤ h ≤ i − 1, is
δh = ∑n

k=1 γh
k Dk, and the data written inph, for i + 1 ≤ h ≤

n, is δh = Dh. The matrix representation of this problem is




1 1
γ1 γ2
γ2

1 γ2
2

...
...

γi−1
1 γi−1

2

· · · 1
· · · γn
· · · γ2

n
. ..

...
· · · γi−1

n
0(n−i)×i In−i



·




D1
D2
D3
...

Dn−1
Dn




=




δ0
...

δi−1
δi+1

...
δn




where0(n−i)×i is the zero matrix of size(n− i)× i, and In−i
is the unit matrix of size(n− i)× (n− i). Since this matrix
is invertible it is possible to generate all data pages and in
particular the required data that has to be written inpi.

For i = y + 1, y + 2, . . . , n, after erasing thei-th block
at the second step, the data written inph, for 0 ≤ h ≤ y,
is δh = ∑n

k=1 γh
k Dk. The data written intoph, for y + 1 ≤

h ≤ i − 1, is δh = Dα−1(h), and the data written inph, for
i + 1 ≤ h ≤ n, is δh = Dh. These equations are represented
as follows:




1 1
γ1 γ2
γ2

1 γ2
2

...
...

γ
y
1 γ

y
2

· · · γn
· · · γ2

n
· · · γ3

n
. ..

...
· · · γ

y
n

An−i



·




D1
D2
D3
...

Dn−1
Dn




=




δ0
...

δi−1
δi+1

...
δn




,

where An−i is a matrix of size(n− y− 1)× n defined as
follows:

1) The h-th row of the matrixAn−i for 1 ≤ h ≤ i− y− 1
is an unit vector of lengthn containing an one in its
(α−1(y + h))-th entry.

2) The h-th row of the matrix An−i for i − y ≤ h ≤
n− y− 1 is an unit vector that contains an one in its
(y + h + 1)-st entry.

Since there are no pages that are moved from blockB j to block
Bi, where y + 1 ≤ i ≤ n − 2 and i + 2 ≤ j ≤ n, the first
i− y− 1 row vectors of the matrixAn−i are different than the
last n− i last row vectors of the matrixAn−i. Therefore, the
matrix An−i contains a set of unit vectors where all the vectors
are different from each other. If we calculate the determinant
of the matrix on the left hand side according to the rows of
the matrix An−i then we remain with an(y + 1)× (y + 1)
matrix of the form:




1 1 1 · · · 1 1
γi1 γi2 γi3 · · · γiy γiy+1

γ2
i1

γ2
i2

γ2
i3
· · · γ2

iy
γ2

iy+1
...

...
...

.. .
...

...
γ

y
i1

γ
y
i2

γ
y
i3
· · · γ

y
iy

γ
y
iy+1




and its determinant is not zero. Therefore, the matrix on the
left hand side is invertible, and it is possible to generate all

data pagesDi, 1 ≤ i ≤ n, and in particular the data page
Dα−1(i).

For i = y, y− 1, . . . , 1, after erasing thei-th block at the
third step, the data written inph, for 0 ≤ h ≤ i − 1, is
δh = ∑n

k=1 γh
k Dk, and the data written inph, for i + 1 ≤ h ≤

n, is δh = Dα−1(h). Therefore, the matrix representing this
equations is




1 1
γ1 γ2
γ2

1 γ2
2

...
...

γi−1
1 γi−1

2

· · · γn
· · · γ2

n
· · · γ3

n
.. .

...
· · · γi−1

n
Pn−i



·




D1
D2
D3
...

Dn−1
Dn




=




δ0
...

δi−1
δi+1

...
δn




,

where Pn−i is a matrix consisting ofn − i row vectors of
length n, and itsh-th row vector,1 ≤ h ≤ n − i, is a unit
vector of lengthn which has an one in itsα−1(i + h)-th entry
and zero elsewhere. As before, all unit vectors in the matrix
Pn−i are different from each other. Therefore the matrix on
the left hand side is invertible, and it is possible to generate
all data pagesDi, 1 ≤ i ≤ n, and the data pageDα−1(i).

The following theorem shows an interesting property of
canonical labelling. Note that since every block has some
data that needs to be moved into it from some other block,
every block needs to be erased at least once. So at leastn + 1
erasures (including erasing the auxiliary block) are needed in
any case.

Theorem 12 Assume r is sufficiently large. Let y ∈
{0, 1, · · · , n − 2}. There is a data-movement solution using
n + y + 1 erasures if and only if there is a canonical block
labelling with parametery.

Proof: First, assume that there is a data-movement solu-
tion usingn + y + 1 erasures. Since every block (including the
auxiliary block) is erased at least once, there are at leastn− y
blocks that are erased only once in the solution. Pickn− y
blocks erased only once and label them asBy+1, By+2, . . . , Bn
this way: “in the solution, wheny + 1 ≤ i < j ≤ n, Bi
is erased beforeB j.” Label the othery blocks asB1, . . . , By
arbitrarily. Let us use contradiction to prove that no data inB j
needs to be moved intoBi, wherei ≥ y + 1, j ≥ i + 2.

Assume some data inB j needs to be moved intoBi. After
Bi is erased, that data must be written intoBi becauseBi is
erased only once. When the solution erasesBi+1 (which is
before erasingB j), the data mentioned above exists in both
Bi and B j. However, note that at the end of the solution all
nm pages are located in their designated location. But, it is
impossible to generate them using onlynm− 1 data pages, so
there is a contradiction. Therefore, we have found a canonical
labelling with parametery. The other direction of the proof
comes from the existence of Algorithm 10.

We can easily make Algorithm 10 use2n− 1 erasures by
letting y = n− 2 and using an arbitrary block labelling. On
the other hand,2n− 1 erasures are necessary in the worst case.
To see that, consider an instance where every block has some

u 1 u 2 u 3

v 1 v 2 v 3

w1

w2 z 2

z 3

z 1 w3

u

v

w z

(a) (b)
x7 x7

x6

x1 x1

x4
x4

x3 x3
x4

x4

Fig. 3. NP hardness of the data movement problem. (a) A simple undirected
graphG0. (b) The corresponding regular directed graphG′. Here every edge
between two different vertices has arrows on both sides, representing the two
directed edges of opposite directions between those two vertices. There is a
symbol×i beside every directed loop, representingi parallel loops of that
vertex.

data that needs to be moved into every other block, where a
canonical labelling must havey = n− 2. So Algorithm 10 is
worst-case optimal.

B. Optimization for All Instances

A specific instance of the data movement problem may
require less than2n− 1 erasures. So it is interesting to find
an algorithm that minimizes the number of erasures for every
instance. The following theorem shows that this is NP hard.

Theorem 13. For the data movement problem, it is NP hard to
minimize the number of erasures for every given instance.

Proof: It has been shown in Theorem 12 and its proof
that minimizing the number of erasures is as hard as finding
a canonical block labelling with a minimized parametery. So
we just need to show that finding a canonical labelling with
minimized y is NP hard. We prove it by a reduction from the
NP hardMAXIMUM INDEPENDENTSET problem.

Let G0 = (V0, E0) be any simple undirected graph. Let
d(v) denote the degree of vertexv ∈ V0 and let ∆ =
maxv∈V0 d(v) denote the maximum degree ofG0. We build
a regular directed graphG′ = (V1 ∪V2 ∪V3, E′) as follows.
Let |V0| = |V1| = |V2| = |V3|. For all v ∈ V0, there are
three corresponding verticesv1 ∈ V1, v2 ∈ V2, v3 ∈ V3. If
there is an undirected edge betweenu, v ∈ V0 in G0, then
there are two directed edges of opposite directions betweenui
andv j for i = 1, 2, 3 and j = 1, 2, 3. For all v ∈ V0, there are
also two directed edges of opposite directions betweenv1, v2
and betweenv2, v3. Add some loops to the vertices inG′
to make all vertices have the same out-degree and in-degree
3∆ + 2. See Fig. 3 for an example.

The graphG′ naturally corresponds to a data movement
problem with n = 3|V0| and m = 3∆ + 2, whereG′ is its
transition graph. (The transition graph is defined in Section II.)
Finding a canonical block labelling with minimized parameter
y for this data movement problem is equivalent to finding
t = n− y vertices – with the value oft maximized – inG′,

a1, a2, . . . , at,

such that fori = 1, 2, . . . , t− 2 and j = i + 2, i + 3, . . . , t,
there is no directed edge froma j to ai. We call such a set

of t vertices – with t maximized – theMAXIMUM SEMI-
INDEPENDENT SET of G′. For all v ∈ V0, let N(v) denote
the neighbors ofv in G0.

CLAIM 1: “There is a maximum semi-independent set of
G′ where∀ v ∈ V0, either all three corresponding vertices
v1 ∈ V1, v2 ∈ V2, v3 ∈ V3 are in the set, or none of them is
in the set. What is more, ifv1, v2, v3 are in the set, then no
vertex in{w1, w2, w3|w ∈ N(v)} is in the set.”

To proveCLAIM 1, let (a1, a2, . . . , at) denote a maximum
semi-independent set (MSS) of G′. (Note that the order of the
vertices in the set matters.) Consider two cases:

Case 1: One of{v1, v2, v3} is in the MSS ofG′. WLOG,
say it is v1. At most two vertices – sayb and c – in
{w1, w2, w3|w ∈ N(v)} can be in the MSS, because oth-
erwise due to the bi-directional edges between them andv1,
there would be no way to place them in the MSS. Let us
removeb, c from the MSS and addv2, v3 right afterv1 in the
MSS. It is simple to see that we get another MSS.

Case 2: Two of{v1, v2, v3} are in the MSS ofG′. WLOG,
say they arev1 and v2. At most one vertex – sayb – in
{w1, w2, w3|w ∈ N(v)} can be in the MSS, for a similar
reason as Case 1. In the MSS, let us removeb, movev2 right
behindv1, and addv3 right behindv2. Again, we get an MSS.

So in this way, we can easily convert any MSS into an MSS
satisfying the conditions inCLAIM 1. SoCLAIM 1 is true.

CLAIM 2: “A set of vertices{w(1), w(2), . . . , w(k)} is
a maximum independent set ofG0 if and only if the set
of vertices (w(1)1, w(1)2, w(1)3, w(2)1, w(2)2, w(2)3, . . . ,
w(k)1, w(k)2, w(k)3) is an MSS ofG′.” It is simple to see
that this is a consequence ofCLAIM 1.

So given a canonical labelling with minimized parametery
for the data movement problem withG′ as the transition graph,
in polynomial time we can convert it into an MSS ofG′, from
that into an MSS ofG′ satisfying the conditions ofCLAIM 1,
and finally into a maximum independent set ofG. So it is NP
hard to find a canonical labelling with minimized parameter
y. So minimizing the number of erasures is NP hard.

Therefore, there is no polynomial time data-movement
algorithm that minimizes erasures for every instance unless
P = NP. However, since every algorithm uses at leastn + 1
erasures, and Algorithm 10 can easily achieve2n− 1 erasures
(by setting y = n − 2), we see that the algorithm is a 2-
approximation algorithm.

VI. CONCLUDING REMARKS

In this paper, we study the data movement problem for
NAND flash memories. We present sorting-based algorithms
that do not use coding, which can use as few asO(n log n)
erasures for moving data inn blocks. We show that coding
techniques can not only minimize the number of auxiliary
blocks, but also minimize the number of erasures toO(n).
In particular, we present a solution based on coding over
GF(2) that uses only2n erasures. We further present a linear-
coding solution that uses at most2n − 1 erasures, which is
worst-case optimal. Both solutions based on coding achieve
an approximation ratio of two for block erasures.

The data movement problem studied here can have numer-
ous practical variations. In one variation, the data to be moved
into each block is specified, but the order in that block is
allowed to be arbitrary. The same algorithms in this paper can
solve this problem well by first assigning an arbitrary order. In
another variation, we may only specify which group of data
needs to be moved into the same block, without specifying
which block. Furthermore, the final data may be a function
of the data originally stored in the blocks. Such variations
require new solutions for optimal performance. They remain
as our future research topics.

REFERENCES

[1] M. Ajtai, J. Komlós and E. Szemerédi, “An 0(n log n) sorting network,”
in Proceedings of the fifteenth annual ACM symposium on Theory of
computing (STOC), pp. 1–9, 1983.

[2] K.E. Batcher, “Sorting networks and their applications,” inProceedings
of the AFIPS Spring Joint Computer Conference, pp. 307–314, 1968.

[3] V. Bohossian, A. Jiang and J. Bruck, “Buffer codes for asymmetric multi-
level memory,”Proc. IEEE ISIT, 2007, pp. 1186-1190.

[4] B. Bollobas,Modern graph theory, Chapter 3, Springer, 2002.
[5] Y. Cassuto, M. Schwartz, V. Bohossian and J. Bruck, “Codes for

asymmetric limited-magnitude errors with application to multi-level flash
memories,”Proc. IEEE ISIT, 2007.

[6] H. Finucane, Z. Liu and M. Mitzenmacher, “Designing floating codes for
expected performance,”Proc. of the 46th Annual Allerton Conference,
2008.

[7] E. Gal and S. Toledo, “Algorithms and data structures for flash memories,”
in ACM Computing Surveys, vol. 37, no. 2, pp. 138-163, June 2005.

[8] A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint information
storage in write asymmetric memories,”Proc. IEEE ISIT, 2007, pp. 1166-
1170.

[9] A. Jiang and J. Bruck, “Joint coding for flash memory storage,”Proc.
IEEE ISIT, 2008, pp. 1741-1745.

[10] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation
for flash memories,”Proc. IEEE ISIT, 2008, pp. 1731-1735.

[11] A. Jiang, M. Schwartz and J. Bruck, “Error-correcting codes for rank
modulation,”Proc. IEEE ISIT, 2008, pp. 1736-1740.

[12] E. Yaakobi, A. Vardy, P. H. Siegel and J. Wolf, “Multidimensional flash
codes,”Proc. of the 46th Annual Allerton Conference, 2008.

