Universal Rewriting in Constrained Memories
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Abstract—A constrained memory is a storage device whose cell level, fori = 1,...,n. There is a directed edge from

elements change their states under some constraints. A typical (¢, c,,...,c,) to (ch,ch ... cp) iff there exists exactly one
example is flash memories, in which cell levels are easy to increase,-ndexi e {1 n} such that’ = ¢; +1 while ¢, = c; for
but hard to decrease. In a general rewriting model, the stored R 1 ! ] ]
data changes with some pattern determined by the application.In j=1,...,i—1,i+1,...,n.

a constrained memory, an appropriate representation is needed L .
for the stored data toyenablepgffigient rew?iting. Definition 3. (GENERALIZED REWRITING) The stored data is

In this paper, we define the general rewriting problem using represented by a directed graph= (Vp, Ep). The vertices
a graph model. This model generalizes many known rewriting Vp represent all the values that the data can take. There is a
models such as floating codes, WOM codes, buffer codes, etc. Wegjrected edgéu,v) fromu € Vptov € Vp, v # u, iffa
present a novel rewriting scheme for the flash-memory model and o 1jsing operation may change the stored data from valte
prove it is asymptotically optimal in a wide range of scenarios. i Th Y lled thed tand th b f

We further study randomization and probability distributions Ya uev.. egraprftis C? edt "’}ta grapfand the num ero
to data rewriting and study the expected performance. We its vertices, corresponding to the input-alphabet size, is denoted

present a randomized code forall rewriting sequences and a by L = |Vp|. Throughout the paper we assume all data graphs
deterministic code for rewriting following any i.i.d. distribution.  to pe strongly connected.
Both codes are shown to be optimal asymptotically.
Example 4. (REWRITING IN FLOATING CODES [13]) The
data consists ok variablesv,, ..., v, each of which takes
Many storage media have constraints on their state trang$ value from the alphabe{0,1,...,¢ —1}. Every rewrite
tions. A typical example is flash memory, the most widely usezhanges the value of one variable. Hence, the data dgfaph
type of non-volatile electronic memory [4]. A multi-level flashhasL. = ¢* vertices. Every vertex can be represented by a
memory cell hag levels:0,1,...,q—1. Itis easy to increase a vector(vy,vy, . ..,v;), wherev; € {0,1,...,¢ —1} is thei-th
cell level but very costly to decrease it because to decrease theable’s value, fof = 1,...,k. There is a directed edge from
level of asinglecell, a whole block of- 10° cells needs to be (vy,v,,..., ;) to (v}, vh,.. ., v}) iffthere exists a single index
erased and reprogrammed [4]. Other storage media, including {1,...,k}, such that’ # v;, while v; =v; forallj # i.
magnetic recording, optical recording and some new memome floating code model reduces to the write-once memory
materials, have constraints on state transitions as well. (WOM) code model [18] whek = 1. It can be seen that the
A storage medium needs to change its state when the stodeda grap/D is a generalized hypercubeloflimensions. When
data changes its value. Depending on the applications, the data 1, it is a complete graph of ordér
often changes under some constrained patterns. For example

the data may change altogether or have its individual comp xample 5. (REWRITING IN BUFFER CODES [2]) A buffer

nents rewritten asynchronously [13]. In another example, whgﬁde stores the lastvalues in a data stream similar to a FIFO

the data represents an information stream, it changes in a sga—e ue. The stored data consistsafariableso,, ..., v, each

) ! . . - of which takes its value from the alphab#l, 1,...,/ —1}.
ing window fashion [2]. Thus, an appropriate representatlcwth every rewrite. v: takesv..+’s oII) d vﬁe for alli }_
is needed for the data to enable efficient rewriting. Y T i+1 N

Wi : . 1....,k—1, andv, takes the most recent value in the streaming
e present the general model of constrained memories acrliéjta Thus, the data gragh hasL — (% vertices. Each
rewriting using graph notation. ) ’ g N )

vertex can be represented by a vedtor, v, ..., vy), where
Definition 1. (CONSTRAINED MEMORY) A constrained mem- v, < {0,1,...,¢ —1} is thei-th variable’s value, fori =
ory is represented by a directed graph = (Vaq, Epq). The 1,...,k. There is a directed edge froffvy,v,,...,v) to
verticesV y, represent all the memory states. There is a direct@g{,z/zl, . ,,v;{) iff vf = v fori =1,...,k—1. It can be
edge(u,v) fromu € Vy tov € V) iff the memory can seen that the data grafphis a de Bruijn graph.

change from state to statev without going through any other
intermediate statesv is called thememory graph

I. INTRODUCTION

Definition 6. (CODE FOR REWRITING) A code for rewriting
has adecoding functionF; and anupdate functionF,. The
Example 2 (FLASH MEMORY MODEL) For a flash mem- decoding functiorfd . VM — Vp maps a memory statec

ory with n cells of g levels each, the memory grapkt v, to the stored dath,(s) € Vp. The update function (which
hasq"™ vertices. Every vertex can be represented by a vec-

tor (c1,¢3,...,¢n), wherec; € {0,1,...,q—1} is thei-th 1This is a special case of the generalized write-once memory model in [6].



represents a rewriting operatiol), : V4 x Vp — V¢, maps unidirectional memory (WUM) [19]-[21], and write efficient
the current memory state€ V. and the new data € Vp memory [1], [9] are also special instances of constrained
to a memory staté, (s,v) € Vy, such that;(F,(s,v)) = v. memories. Among them, WOM is the most related to the flash
Clearly, there should be a directed path froto F, (s, v) inthe memory model studied in this paper.
memory graph\. Write once memory (WOM) was studied by Rivest and
We note that iff;(s) = v we may seff,(s,v) = s, which Shamir in their original work [18]. In a WOM, a cell’s state can
corresponds to a case in which we do not need to change thenge from 0 to 1 but not from 1 to 0. This model was later
stored data. Throughout the paper we do not consider suctiemeralized with more cell states in [6], [8]. The objective of
case as a rewrite operation. WOM codes is to maximize the number of times that the stored
data can be rewritten. A number of very interesting WOM code
. : constructions have been presented over the years, including the
that thei-th rewrite changes the stored data fram, 0 o;. tabular codes, linear codes, etc. in [18], the linear codes in [6],

Given a storagg code for rewriting, we denote by(C) the. the codes constructed using projective geometries [17], and the
number of rewrites thaf guarantees to support for all rewrite

sequences. Thug(C) is a worst-case performance measu coset coding in [5]. Profound results on the capacity of WOM

r :
of the code. The codé is said to beoptimal if £(C) is Rave been presented in [8], [11], [18], [22]. Furthermore, error-

maximized. On the other side, if a probabilistic model fotr:orrectmg WOM codeg'have been studied in [25]. In 6.1" the
above works, the rewriting model assumes no constraints on

rewriting or randomization for code construction is used, tr}ﬁe data, namely, the data graphis a complete graph
expected rewriting performance can be defined accordingly. With tr'1e increa'sing importance of flash memories t.he flash

memory ol We present & nove code constcton, oo Modelas proposed and suded recenty in (2], (13]
trajectory code based on tracing the changes of data in tl"behe rewriting schemes include floating codes [13], [14] and

data graphD. The code is asymptotically optimal (up to uffer codes [2]. Both types of codes use the joint coding of

constant factors) for a very wide range of scenarios. It includ@sultlple variables for better rewriting capability. Their data

floating codes, WOM codes, and buffer codes as special ca phs_D are gen_eralized hypercubes and de Bruijn graphs,
and is a substantial improvement compared to known resuﬁ%.sbe?t'vely' Multiple roatmg ches have been presented,
We further study randomization and probability distributiong]CIUdIng the code constructions in [13], [14], the flash codes

in [16], [24], and the constructions based on Gray codes in [7].

to data rewriting and study the expected performance. A co. . : S
is calledstrongly robusif its asymptotic expected pen‘ormance‘f1 e floating codes in [7] were optimized for the expected

. . " . rewriting performance.
is optimal forall rewriting sequences. It is callegeakly robust c dt i q h des in thi
if the asymptotic expected performance is optimal for rewritin ompared to existing codes, the codes in this paper are

following any i.i.d. distribution. We present a randomize %t only fortat. mﬁre gte_znerlal re;/vntmg mofdel, but.dalso pro-
construction for strongly robust code and a deterministi¢C¢ asymptotically-optimal performance for a wider range

construction for weakly robust code. of cases. This can be seen clearly from Table |, where the

Both our codes for general rewriting and our robust Codggymptotlcally—optlmal codes are summarized.
are optimal up to constant factors (factors independent of the
problem parameters). Namely, for a constast 1, we present
codesC for which ¢(C) is at leastr times that of the optimal We use the flash memory model of Example 2 and the
code. We would like to note that for our robust codes thgeneralized rewriting model of Definition 3 in the rest of this
constant involved is arbitrarily close to 1. paper. We first present a novel code constructiontrijectory

The rest of the paper is organized as follows. In Section kpde then show its asymptotically-optimal performance.
related results are reviewed and compared to the results in this
paper. In Section lll, a new code construction, tregectory A. Trajectory Code Outline

code is presented and its optimality is analyzed. In Section IV, | no, 1y, 1o ny be d+1 positive integers and let

robust codes are presented. In Section V we briefly discuss ;pe: E?:o n;, wheren denotes the number of flash cells, each
results of the paper.

of g levels. We partition the: cells intod + 1 groups, each
with ng, nq,...,n, cells, respectively. We call themegisters
So,S1,...,5,, respectively.

There has been a history of distinguished theoretical studyoyr encoding uses the following basic scheme: we start by
on constrained memories. It includes the original work bysjng registeS,, called theanchor, to record the value of the
Kuznetsov and Tsybakov on coding for defective memgyitial datav, € Vp. For the next rewrite operations we use
ries [15]. Further developments on defective memories ig-yifferential scheme: denote hy,..., 05 € Vp the nextd
clude [10], [12]. The write once memory (WOM) [18], write\ 51 es of the rewritten data. In thieh rewrite,1 < i < d, we
store in registeiS; the identity of the edgév;_1,v;) € Ep.

?&e do not require a unique label for all edges globally, but

random access of cells. NAND flash memories have much more restric . ) _ )
access modes for cell pages, which limit usable coding schemes on rewritifgther require thabcally, for each vertex if/p, its out-going

A sequence of rewrites is a sequer(eg, v1,v;...) such

IIl. TRAJECTORYCODE

II. OVERVIEW OF RELATED RESULTS

2The codes here are more suitable for NOR flash memories, which all



TABLE |

A SUMMARY OF THE CODES FOR REWRITING WITH ASYMPTOTICALLY
OPTIMAL PERFORMANCE(UP TO CONSTANT FACTORS$. HEREn,k, ¢, L
ARE AS DEFINED INEXAMPLES 2, 4, 5.

letd = 0 if D is a complete graph, and describe how todkset
whenD is not a complete graph in section IlI-C. The encoding
used by each register is described in the next section.

B. Analysis for a Complete Data Graph

TYPE | ASYMPTOTIC OPTIMALITY [ REF_|

WOM code Q is | F(C) is asymptotically optimal | [18] In this section we present an efficiently encodable and

a complete graph) decodable code that enables us to store and rewrite symbols

WOM code O is | t(C) is asymptotically optimal | [6] from an input alphabeVp of size L > 2, and whereD is a

:cc:_mplet%graph) ‘t"’ge”_é = 9(11 NG complete graph. The information is storedsirflash cells of

isog 'Q}?pg?cfbg) V\Ehgrﬁ( f‘gg%oa'ﬁg Zy:c’p@'(T)"" {1 4} q levels each. (To use the code for registewith i > 0, we

floating code P | £(C) is asymptotically optimal | [13] just need to replacé by A.) _

is a hypercube) | whenn = Q(klogk) and¢ = | [14] We first state a scheme that allows approximatedy’ 8
e(1) rewrites in the case in which < L < n. We then extend it to

floating code P | £(C) is asymptotically optimal | [24] hold for generallL andn. We present the quality of our code

is g hypercube) | whenn = (k) _a”ﬁg = @(1% constructions (namely the number of possible rewrites they

gu d:rB(ilchr? g;;h) xﬁgr:ia:sﬁ%ogﬁz Zy;%n(n;? E]S] perform) using thed () notation. Here, for functiong and

floating code D | weakly robust codes 7] g, we say thag = O(f) if g is asymptotically _bounded both

is a hypercube) | whenk = ©(1) and/ =2 above and below by up to a constant factor independent of

WOM code @ is | t(C) is asymptotically optimal | this the variables off andg.

a complete graph)| whenn = Q(log? ¢) paper 1) The Case < L < n: In this section we present a code

more general t(C) is asymptotically optimal | this for small values ofL.. The code we present is essentially the

coding (© has whenZ =Q(L), or wh;elr;gn: paper one presented in [18].

maximum ot Q(log™ L) andAZ_ (g _)' Construction7. Let 2 < L < n. This construction is an

gegr.e'EA' For Whenn = Q(log” L), £(C) is efficiently encodable and decodable rewriting catidor a

oating codes, asymptotically optimal in . .

A=k({—1)) the worst case sense (worst complete data grapB with L states, and flash memory with
case over all data graph3). n cells withq states each.

robust coding Strongly robust codes when this Let us first assume = L. Denote the: cell levels byc =
L?log L = o(qn). Weakly paper|  (co,cq,...,c1_1), wherec; € {0,1,...,q — 1} is the level of
robust codes whei = ©(1). thei-th cell fori = 0,1,...,L — 1. Denote the alphabet of

data byVp = {0,1,...,L —1}. We first use only cell levels
0 and 1, and the data stored in the cellifg 01 ic; (mod L).
With each rewrite, we increase the minimum number of cell

edges have unique labels frofd, ..., A}, whereA denotes levels from O to 1 so that the new cell state represents the new

th? m??(m:al ohut-(:'egrze n the data gr.aph hieved b data. (Clearlycy remains untouched as 0.) When the code can
ntw_tlve y, t € Irstd rewrite operatlons are achieved by, longer support rewriting, we increase all cells (includigp
encoding thetrajectory taken by the input sequence startin

ith th hor d Afted h . h Yrom 0'to 1, and start using cell levels 1 and 2 to store data in the
with the anc or ata. Afte suc rewntt_as, we repeat theg,mq way as above, except that the data stored in the cells uses
process by rewriting the next input frolf, in the anchoiSy, the formulaZ.L‘Ol i(c; —1) (mod L). This process is repeated

=

and then continuing witld edge IabeI; by, ..., Sa. g — 1 times in total. The general decoding function is therefore
Let us assume a sequence sofewrites have been storedjqfined as

thus far. To decode the last stored value all we need to know
is s mod (d +1). This is easily achieved by usinf/q] Y i(ci—co) (mod L).
more cells (not specified in the previodis- 1 registers), where iz0

t is the total number of rewrite operations we would like t0 1o now extend the above coderto> L cells. We divide
guarantee. For thege/q| cells we employ a simple encodinNdna,; cells intob — \1/L] groups of size. (some cells may

scheme: in every rewrite operation we arbitrarily choose ongmain unused). We first apply the code above to the first group
of those cells and raise its level by one. Thus, the total levg}; ~aojis then to the second group, and so on.

in these cells equals ) )

The decoding process takes the value of the anchor Theorem 8. Let2 < L < n. The codeC in Construction?
and then follows(s — 1) mod (d + 1) edges which are read Juarantees(C) = n(q —1)/8 = ©(nq) rewrites.
consecutively fromSy,Sy,.... Notice that this scheme is Proof: First assume: = L. When cell levels — 1 andj
appealing in cases where the maximum out-degre®dé are used to store data (fgr=1,...,q9 — 1), by the analysis
significantly lower than the state spate. in [18], even if only one or two cells increase their levels with

Note that each registe;, fori = 0,...,d, can be seen as aeach rewrite, at least. +4)/4 rewrites can be supported. So
smaller rewriting codenvhose data graph is @mplete graph the L cells can support at Ieaéw rewrites. Now let
of either L vertices (forSy) or A vertices (forSy,...,S5;). We n > L. Whenb = |n/L], it is easy to see thatL > n/2.

L-1
F;(C) =



The b groups of cells can guarantééC) = % >

@ = O(ngq) rewrites. [ ]

C. Analysis for a Bounded Out-Degree Data Graph
We now return to the outline of the trajectory code from

2) The Case of Largd.: We now consider the typical Section IlI-A and apply it in full detail using the codes from

setting in whichL is larger thann. The rewriting code we
present reduces the general case to that of the gaselL
studied above. We start by assuming that L < 2V". We
will address the general case at the end of this section.

Section I1I-B2 to the case of data grapbswith bounded out-
degreeA. We refer to such graphs @srestricted. To simplify
our presentation, in the theorems below we will again use
the ®(f) notation freely, however, as opposed to the previous

Let b be the smallest positive integer value that satisfisgction we will no longer state or make an attempt to optimize

1n/b|" > L.

Claim 9. For16 < n < L < 2V" it holds that

b< ZlogL'
logn

Proof: We first note that for alll < x < 4 we have
2

1n/x]* > n*/2. Since1l6 < n < L < 2LV, it is easy to
verify that indeed

2logL < vn

logn =~ 2°

Therefore,
2logL

nlogn | Togn
2log L

log L
It —
2 pnlogn — L,

which implies the upper bound. [ ]

Construction 10. Let n < L < 2V™. This construction is
an efficiently encodable and decodable rewriting cOder a
complete data graph with L states, and flash memory with
cells withq states each.

Fori = 1,2,...,b, letv; be a symbol from an alphabet of

size|n/b| > LY. We may represent any symhok Vp as
a vector of symbol§v,,v;,...,vy). Partition then flash cells

the constants involved in our calculations. We assume that
n < L < 2V". Notice that forL. < n, Construction 7 can be
used to obtain optimal codes (up to constant factors).

Using the notation of Section IlI-A, to realize the trajectory
code we need to specify the sizesand the value ofi. We
consider two cases: the case in whiths small compared to
n, and the case in which is large.

Construction 12. Let A < | 5257 |. We build an efiiciently

encodable and decodable rewriting cddtor any A-restricted
data graphD with L vertices andh flash cells ofg levels as
follows. For the trajectory code, let = |logL/logn| =
O(logL/logn). Set the size of thd + 1 registers tong
\n/2] andn; = |n/(2d)| > Afori=1,...d. (We obviously
havey_n; < n.)

The update and decoding functions of the trajectory abde
are defined as follows: Consider using the encoding scheme
specified in ConstructiofO for the encoding of symbols from
Vp in thengy flash cells o5y corresponding to the anchor, and
using the scheme specified in Constructibfor the encoding
of one of{1,...,A} in the flash cells of5; (i = 1,...,d).
Notice that the latter is possibleas> A fori =1,...d.

;}gg” The codeC of Construc-

tion 12 guarantees(C) = ®(nq) rewrites.

Theorem 13 Let A <

Proof: By Theorems 11 and 8, the number of rewrites

into b groups, each withn/b] cells (some cells may remainpossible inSy is equal (up to constant factors) to that $f

unused). Encoding the symbolinto n cells is equivalent to
the encoding of eacty into the corresponding group pfi /b

cells. As the alphabet size of eaghequals the number of cells ©

it is to be encoded into, we can use Constructido storev;.

Theorem1l Let16 < n < L < 2V". The codeC in
Constructiorl 0 guarantees

n(g—1)logn nglogn
l6logl log L

HC) =

rewrites.

@i>=1):

noqlogng\ nqlogn\ _ /ngy\ _ ‘
( log L >_®(logL)_®(d)_®(n’q)
Thus the total number of rewrites in the scheme outlined in

Section IlI-A isd 4+ 1 times the bound for each registsy,
and sot(C) = O(ng). |

Construction 14. Let leggz < A < L. We build an

efficiently encodable and decodable rewriting cddéor any
A-restricted data grapt® with L vertices andn flash cells
of g levels as follows. For the trajectory code, lét =

Proof: Using Construction 10, the number of rewritelog L/ logA| = ©O(logL/logA). Set the size of the reg-

possible is bounded by the number of rewrites possible f@gters tong = |n/2] andn;

\n/(2d)] fori =1,...d.

each of theb cell groups. By Theorem 8 and Claim 9, this is The update and decoding functions of the trajectory ¢bde

at least

g-—1

L%J 8

> <nlogn _1> g-1 :®(nqlogn)'
2log L 8 log L

are defined as follows: Consider using the encoding scheme
specified in Constructiof0 for both the encoding of symbols
from Vp in theny flash cells o5y corresponding to the anchor,
and the encoding of one dfi, ..., A}in the flash cells ob;
i=1,...,4).



Theorem 15 Let Hi‘)’gﬂ < A < L. The code of Construc- Theorem 18 Whenn < L — 1, any rewriting cod€ that stores
tion 14 guarantees(C) — © (nlq Oloi n) rewrites. symbols from some data gr?om: inn fla_lsh cells ofg levels
& supports at mos(C) = O ( 16 ) rewrites.

. . 1
Proof. By Theorem 11, the number of rewrites possible ogl

Proof: Let us examine some stateof the n flash cells,

in Sq is: i . ;
currently storing some value € Vp, i.e., F;(s) = v. Having
o <”0qlog ”0) -0 (nqlogn) no constraint on the input transition graph, the next symbol
log L log L we want to store may be any of tHe— 1 symbolsv’ € Vp,
Similarly the number of rewrites possible f (i > 1): v # . . _ _ .
If we allow ourselves operations of increasing a single cell
) (niqlog ”i) -0 <nqlogn> e <”‘7 logn) ' level of then flash cells (perhaps, operating on the same cell
log A dlogA log L more than once), we may rea¢fi"’~!) distinct new states.

Here we use the fact that @s< log L it holds thatd = o(n) However, by our choicd” /") < L —1 and so we need at
andlogn; = O(logn —logd) = O(logn). Notice that the leastr +1 such operations in the worst case. Since we have
two expressions above are equal. Thus, as in Theorem a3otal ofn cells with g levels each, the number of rewrite
we conclude that the total number of rewrites in the scherp@erations is upper bounded by

outlined in Section IlI-A isd + 1 times the bound for each nlag —1 alg —1 nalog n
registerS;, and sot(C) = © (”folgi” . n tC) < (qur 1 ) < log((qul) L _ ( iloggL ) :
{ 1+logn J +1

D. Optimality of the Schemes

We describe upper bounds on the number of rewrites in o loen _ _
general rewriting schemes to complement the lower bounfiseorem 19 Let A > {ZIOELJ- There exist\-restricted data
induced by our constructions. graphsD over a vertex set of size, such that any rewriting

Theorem 16 Any rewriting codeC that stores symbols from code_C that a”OV‘./S the representation of the corresponding
restricted data im flash cells ofq levels supports at most

some data grap® in n flash cells ofj levels supports at most nglogn .
t(C) < n(qg —1) = O(nq) rewrites. HC) = O ( Toga ) rewrites.

Proof: The bound is trivial. In the best case, all cells are  Proof: We start by showing thaf-restricted graphsD
initialized at level0, and every rewrite increases exactly on®ith certain properties do not allow rewriting codésthat
cell by exactly one level. Thus, the total number of rewritesupport more thanC) = O ("folging rewrites. We then show
is bounded by (g — 1) = O(nq) as claimed. B that such graphs do indeed exist. This will conclude our proof.

For large values of_, we can improve the upper bound. Let D be a A-restricted graph whose diametéris at

First, let r denote the largest integer such tH@t; ') < mosto (}ggi). Assuming the existence of such a graph
L — 1. We need the following technical claim. &

consider (by contradiction) a rewriting cod® for the A-

Claim 17. For alll < n < L — 1, it holds that restricted data described 8, that allowst(C) = w (”ﬁ}gi")
log(L — 1) rewrites. We us& to construct a rewriting codé’ for a new

rz max{ LHlognJ ’ } : data graptD’ which has the same vertex Séy = Vp but is

a complete graph. The codé will allow ¢(C') = w g”fgg*‘i”)

rewrites, a contradiction to Theorem 18. This will imply that

(1 +n— 1) el -1 our initial assumption regarding the quality of our rewriting
1 ' code( is false.

The rewriting codeC’ (defined by the decoding functidf

Proof: First, it is easy to see that> 1 since

Next, when lcl)i(llggjz)J > 1 we may use the well-known gng the update functiof’) is constructed bymimicking C
bound for allv > u >1, (defined by the decoding functiafy and the update function
v e U F,). We start by settingd”; = F;. Next, lets be some state of

(u> < (;) ’ the flash cells. Denoté&,(s) = F;(s) = vp € Vp. Consider

) _ a rewrite operation attempting to store a new vatyes Vp,
wheree is the base of the natural logarithm. Thus, 1 # vo. There exists a path i® of length at most’ < d

log(L-1) | from vy to v1; which we denote by, uq,uy, ..., uzy_1,01.
{log(L—l)J i 1> p rog(L—DJ ten—e L J

T+logn .
T+logn T+logn We now define

log(L—1 log(L—1
\‘(;i(logn)J \‘(l)ig&-(logn)J F;(val> :FM(FM('"PM(FLl(Srul)/”Z)'”lud’fl)lvl)/

log(L—1)
< (67’1) T+logn — [, — 1,

which simply states that to encode a new vaiyewne follow
the steps taken by the codeon a short path fronvy to v4
which proves our claim. m in the data grapiD.



As C allowst(C) = w (”ﬂ)l;i”) rewrites, the code fo€’ Let (c1,cp,...,c,) denote then cell levels in the flash

allows at least memory model. Giverr’ = (cq,¢,...,cn), define itsweight
—» — n —»
1 1 w(C) asw(¢) = Y ¢ Clearly,0 < w(¢) < (g —1)n.
t(C) = <1;q1 OgAn> = (ni] ogLn> Given thedecoding functionF,, the cell statec represents
08 08 some symbolF;(¢) € {0,1,...,L —1}. We now present a
rewrites. Here we use the fact that= O %gg ). code construction.

Itis left to show the existence of data graﬂher)f Maximum ¢, nstryction 20, Choose parametefs; anda; from the set
out-degreeA whose diameter! is at mostO ( °§L) Such 10,1,...,L—1} forall0 < i < n(q _']1) —landl <j <
graphs exist for amp > {nlognJ > w(log® L) (recall our - The specific values df;,; anda; will determine the code’s

2logL .
, . o erformance. Given a cell state= (c1,¢o,...,cn),
setting of L < 2V"). Namely, consider the distributioG, , p (c1re2 n)

over graphsG = (V,E) in which |V| = L and each pair w(@)—1

(v1,v2) in V x V is chosen to be irE independently with <29 _1,iCi + Z a,) mod L.
probability p. For pL = w(log3 L), in [3] (Chapter 10) it is

shown that with high probability the maximum degreeGn
is A < 2pL and the diameted of G is at mostzlg)ggpLL. This

i=0

By default, if¢ = (0,0,...,0), thenF;(¢) = 0.

implies the existence of graphs with maximum degree\ For simplicity, we will omit the term tnodL” in all com-
and diamete© (IOgi) as desired. m putations below that consist of values of data. For example,
the formula in the above construction will be simply written
V. RoBusT Cope as Fy(€) = LiLy Ou(e)-1i% + Lig & " ai, and (@) — Fy(c))

When rewriting is a random process, it is interesting twill mean F;(¢) — F;(c’) mod L.
design codes with good expected performance. We can als@Given a cell stat&€ = (cy, ..., cy), define itsi-th neighbor
use randomized code constructions to improve the expectesN;(¢) = (cq,...,¢i_1,¢ +1,¢i41,.-.,¢4) (provided that
performance. In this section, we study two types of such codése cell stateN;(¢) exists), fori = 1,...,n. There is a
the strongly robust codesind theweakly robust codesAs directed edge in the memory graph from vertexc to vertex
before, we focus on the flash memory model, whereells N;(¢). Call this edge thé-th outgoing edge of and thei-th
of g levels store the data from a data graphof L vertices. incoming edge ofN;(¢). Definee;(¢) = F;(N;(¢)) — F;(¢),

A strongly robust codés a randomized code that maximizesand calle;(¢) € {0,1,...,L — 1} the value of this edge. Let
the expected number of supported rewritesefeeryrewriting  ¢(¢) = [{¢;(¢) | i = 1,2,...,n}|, and cally(¢) the diversity
sequence. In this section, we present a code such that for eusfry. Note thaty(c) is the number of different values that the
rewriting sequence, the expected number of supported rewritegoing edges of take. For efficient rewriting, it is beneficial
isn(g—1)—o(ng). It is clearly strongly robust. for () to be large.

We define aweakly robust code¢o be a code that maxi-
mizes the expected number of supported rewritesefgry Lemma2l Letc = (cy,...,c,) be a cell state such thet <
rewriting model that follows an i.i.d. distribution, specified; — 1 fori =1, ...,n. With Constructiorf0,
as follows. Let{0,1,...,L — 1} denote the alphabet of the

data Letpo, p1, ..., pr_1 be L positiveprobabilities such that (@) = [{Ow@,ili=12,...,n}|.
ZZL o pi = 1. Assume that events happen only at discrete

timesty, t,t3,..., and at timet; (for j = 1,2,3,...), the data Proof: We have

follows an i.i.d. distribution: it has valuewith probability p;, . . .
fori=0,1,...,L—1.Ifattimet;, the data changes to a value ei(€) = Fa(Ni(€)) — Fa(C) )
different from that of timet;_;, then there is a rewrite. Clearly, _ 0 g w(©) 4

if at some moment the data isthe next rewrite will change - ; (@), T Yw(@),i T ;) aj

it to j # i with probability p;/ Y xeqo,...i-1,i+1,..,..-1} Pk- IN - o 1_

this section, we present deterministiccode such  that for 1 B w@- ,

any positive probability setpo, p1,...,prL-1), the expected ; w(@)-1j% ~ ;) a
number of supported rewrites igg — 1) — o(nq). This code = " /

is clearly weakly robust. = B T Tu(o) 2(9 @ = Ow(e)-1,/)Cj

A. Code Construction

In the trajectory code, the basic building block is a cod@nly the first term,6,, ;, depends on. Hence,y(c) =
whose data grapl® is a complete graph and where> L. [{;(©) | i=1,2,...,n}| = [{0p@,i | i=1,2,...,n}[. =
In this section, we focus on robust codes witl> L. There So to makey(c) large, it is sufficient to choose parameters
is no restriction on their data graphs. The robust codes canibeConstruction 20 such that{ 6, | i =1,2,...,n}| is
used as the building blocks in the trajectory code. large. We now analyze the robustness of the construction.



B. Strong Robustness at least the number of balls thrown to make at least one bin

In this subsection, for succinctness, we analyze a simplifi@&l' .
version of Construction 20. (The general construction canSUPPOse thati(q —1) —cy/n(q —1) balls are uniformly

have more variations, and the analysis here can be readfjdomly thrown intoL bins, and there is no limit on the
used for it) Assumer > L. Fori = 1,2,...,L, define Capacity of any bin. Here s sufficiently large and? log L =
gi=1{j|1<j<mj=i (modL)}. For example, ifn = o(c?), 2 = o(gn). Fori =1,...,L, letx; denote the nllmeer
8,L = 3, theng; = {1,4,7},% = {2,5,8},g3 = {3,6}. of balls thrown into thei-th bin. Clearly, E[x;] = @ —
Also defineh; = } e, ¢j, wherec; is the j-th cell level. In ©v9=") ”éqfl). By the Chernoff bound, whemg is sufficiently
the following construction, the cells in the same gework  |arge, the probability that thith bin contains more thafiy —
as a “super cell. 1)- (2] balls is less thare~(/L%), By the union bound,
Construction 22. (STRONGLY-ROBUST CODE) For all0 < the probability that one or more of the biznszcontain more
i < n(q—1) — 1, choose the parameterindependently and than (g — 1) - [ 7] balls is less tharLe~ (/L") Sincec is
uniformly at randonfrom {0,1,..., L — 1}. Given a cell state sufficiently large and.2log L = o0(c2), Le=(*/1*) = o(1).

¢=(cy,c2,...,cn), SEL So whenn(g — 1) — c¢y/n(g — 1) balls are uniformly ran-
L w(@)-1 domly thrown into L bins, with high probability, all thel
Fi(2) = Zihi + Z a;. bins have(q —1) - [}] or fewer balls. Sincen(q - 1) —
) =0 cy/n(g—1) =n(qg—1) —o(ng), we get the conclusion. m

For every rewrite, change the cells to a new state such that .é\lote that the number of rewrites can never excegg-1).

new cell state represents the new data value and its Weight. Eeozr;r.n 2‘: sho:/vs tr;)at i{asyn;ptonc_:ally @"gf‘f’“)' Construc-
minimized. (If there is a tie, break it arbitrarily.) 1on IS Strongly robust under miid conditions.

The above code has a randomized construction that uses the/Veéak Robustness

random numbersy, ay, . . ., a,(;—1)—1- These random numbers We now consider a deterministic version of Construction 20.
are stored in separate cells from the code, and are unrelageshstruction 25. (WEAKLY ROBUST CODE) Given a cell
(that is, unknown) to the rewriting sequences. They are gengfaer — (c1,¢2,--.,Cn),

ated only once and can be used by many codes with the same

construction, so their cost can be omitted. 1

L w(c)—
Fy(@) =Y i+ Y i
Lemma23 Letn > L. Letc = (cy,...,cn) be a cell state such i=1 i=0

thath; < (q—1)[g;| fori =1,..., L. (Ig| is the cardinality of  For every rewrite, change the cells to a new state such that

the setg;.) With Constructior22, if ¢ is the current cell state, thjs new cell state represents the new data value and its weight
no matter what value the next rewrite changes the data to, {8¢ninimized. (If there is a tie, break it arbitrarily.)

rewrite increases the weight of the cell state only by one, and jt .
increase#; by one with probability* foralli € {1,...,L}. Theorem 26 Let L > 3 be a constant and let be a multiple
of L. For a codeC of Construction25, for any i.i.d. rewriting

Proof: From Construction 22, we can see that ifnodel with a positive probability séto, p1,---,pL-1), the
we increase h; by one, the data value will ianeaseexpected number of rewrites itsupportgl(‘ﬂ — 1) —O(qu).
by i+ a,¢ (modulo L), for i € {1,...,L}. Since
{i+aye li=1,...,L} = {0,1,...,L—1}, the rewrite
will increase exactly one cell level by one. Singg is
uniformly random over{0,1,...,L — 1}, SO iSi + ). SO
the rewrite will increasé:; by one with probability%.

The above lemma applies &l rewriting sequences.

Proof: Fori = 1,2,...,L, let us see the cells in the
set g; as a “super cell” of(g —1)|g;| + 1 levels. Then
we can seef = (hy,hy,..., hy) as the state of thesé
super cells, wherdy; is the level of thei-th super cell. For
i =1,2,...,L, if we increaseh; by one, the data’s value
i "9 ses will be increased by(Lf jh +i+ 200 ) = (Thy jhy +
Theorem 24 LetL logL = o(qn), andT =o(1). For ZW}S)*lj) — i+ w(@ ( mod L). Let us callu(@) = (1+
a codeC of Constructior22, for every rewriting sequence, the /-

o w(C),2+ w(7),...,L+w(c)) theupdate vectoof the super-
expected number of rewrites it supportsilg — 1) — o(nqg). ce(ll)stateE (:)(hl,hz, ) ,(hL))) Before any super-cell reaches

Proof: ConsiderL bins that can, respectively, contdip— its highest level, a rewrite will increase the weight of the
1)1g1l,(g—1)|g2|,--.,(g—1)|gr| balls. Useh; to denote cell state by only one. So it is easy to see that initially,
the number of balls in théth bin, and increasing; by one ¢ = (0,0,...,0) andu(¢) = (1,2,...,L — 1,0); after one
is the same as throwing a ball into thieh bin. Note that rewrite,u(¢) = (2,3,...,L—1,0,1); after the second rewrite,
every bin can contain at leagy — 1) - | 7] balls and at most u(¢) = (3,4,...,L —1,0,1,2); and so on. After exactly.

(g —1)-[7] balls. By Lemma 23, before any bin is full, arewrites,u(¢) = (1,2,...,L —1,0) again. The update vector
rewrite throws a ball uniformly at random into tliebins. The shifts cyclically with a period of_.

rewriting process can always continue before any bin becomedVe model the rewriting process as a Markov chain as
full. Thus, the number of rewrites supported by the c6de follows. Every state in the Markov chain is represented by



a pair(V;ii), whereV € {0,1,...,L — 1} is the value of the = The above theorem shows the weak robustness of the code
data at a given time, anidlis the update vector of the super-celtonstruction.
state at that same time. Sintecan takel values andi can

take L values, there are totallj/? states in the Markov chain.

A state can transit to another state iff a rewrite can make sucHn this paper, we present the trajectory code for rewrit-
a change happen. (We assume that no super-cell has any upgrand show its optimality. We also present a robust code
bound on its cell level.) A statéV; i7) can transit to the state construction for the optimization of the expected rewriting
(V/;ii') if and only if V' # V andi’ is the next cyclic shift of Performance. It will be interesting to study more con;tramed
i1, and the transit probability i% > 0. Clearly, memory moc_iels and rewriting models, and aIsp combine error
such a Markov chain is irreduéfl{alé;"'pbs?t|v}e recurrent, and hgarrection with the rewriting codes. That remains as our future

a period ofL (because the update vectors have a periob)of '€S€arch.

V. CONCLUDING REMARKS
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