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Abstract—A constrained memory is a storage device whose
elements change their states under some constraints. A typical
example is flash memories, in which cell levels are easy to increase
but hard to decrease. In a general rewriting model, the stored
data changes with some pattern determined by the application. In
a constrained memory, an appropriate representation is needed
for the stored data to enable efficient rewriting.

In this paper, we define the general rewriting problem using
a graph model. This model generalizes many known rewriting
models such as floating codes, WOM codes, buffer codes, etc. We
present a novel rewriting scheme for the flash-memory model and
prove it is asymptotically optimal in a wide range of scenarios.

We further study randomization and probability distributions
to data rewriting and study the expected performance. We
present a randomized code forall rewriting sequences and a
deterministic code for rewriting following any i.i.d. distribution.
Both codes are shown to be optimal asymptotically.

I. I NTRODUCTION

Many storage media have constraints on their state transi-
tions. A typical example is flash memory, the most widely used
type of non-volatile electronic memory [4]. A multi-level flash
memory cell hasq levels:0, 1, . . . , q− 1. It is easy to increase a
cell level but very costly to decrease it because to decrease the
level of asinglecell, a whole block of∼ 105 cells needs to be
erased and reprogrammed [4]. Other storage media, including
magnetic recording, optical recording and some new memory
materials, have constraints on state transitions as well.

A storage medium needs to change its state when the stored
data changes its value. Depending on the applications, the data
often changes under some constrained patterns. For example,
the data may change altogether or have its individual compo-
nents rewritten asynchronously [13]. In another example, when
the data represents an information stream, it changes in a slid-
ing window fashion [2]. Thus, an appropriate representation
is needed for the data to enable efficient rewriting.

We present the general model of constrained memories and
rewriting using graph notation.

Definition 1. (CONSTRAINED MEMORY) A constrained mem-
ory is represented by a directed graphM = (VM, EM). The
verticesVM represent all the memory states. There is a directed
edge(u, v) from u ∈ VM to v ∈ VM iff the memory can
change from stateu to statev without going through any other
intermediate states.M is called thememory graph.

Example 2. (FLASH MEMORY MODEL) For a flash mem-
ory with n cells of q levels each, the memory graphM
has qn vertices. Every vertex can be represented by a vec-
tor (c1, c2, . . . , cn), where ci ∈ {0, 1, . . . , q− 1} is the i-th

cell level, for i = 1, . . . , n. There is a directed edge from
(c1, c2, . . . , cn) to (c′1, c′2, . . . , c′n) iff there exists exactly one
index i ∈ {1, . . . , n} such thatc′i = ci + 1 while c′j = cj for

j = 1, . . . , i− 1, i + 1, . . . , n.1

Definition 3. (GENERALIZED REWRITING) The stored data is
represented by a directed graphD = (VD , ED). The vertices
VD represent all the values that the data can take. There is a
directed edge(u, v) from u ∈ VD to v ∈ VD, v 6= u, iff a
rewriting operation may change the stored data from valueu to
valuev. The graphD is called thedata graphand the number of
its vertices, corresponding to the input-alphabet size, is denoted
by L = |VD |. Throughout the paper we assume all data graphs
to be strongly connected.

Example 4. (REWRITING IN FLOATING CODES [13]) The
data consists ofk variablesv1, . . . , vk, each of which takes
its value from the alphabet{0, 1, . . . , `− 1}. Every rewrite
changes the value of one variable. Hence, the data graphD
has L = `k vertices. Every vertex can be represented by a
vector(v1, v2, . . . , vk), wherevi ∈ {0, 1, . . . , `− 1} is thei-th
variable’s value, fori = 1, . . . , k. There is a directed edge from
(v1, v2, . . . , vk) to (v′1, v′2, . . . , v′k) iff there exists a single index
i ∈ {1, . . . , k}, such thatv′i 6= vi, while v′j = vj for all j 6= i.
The floating code model reduces to the write-once memory
(WOM) code model [18] whenk = 1. It can be seen that the
data graphD is a generalized hypercube ofk dimensions. When
k = 1, it is a complete graph of order`.

Example 5. (REWRITING IN BUFFER CODES [2]) A buffer
code stores the lastr values in a data stream similar to a FIFO
queue. The stored data consists ofk variablesv1, . . . , vk, each
of which takes its value from the alphabet{0, 1, . . . , `− 1}.
With every rewrite,vi takes vi+1’s old value for all i =
1, . . . , k− 1, andvk takes the most recent value in the streaming
data. Thus, the data graphD has L = `k vertices. Each
vertex can be represented by a vector(v1, v2, . . . , vk), where
vi ∈ {0, 1, . . . , `− 1} is the i-th variable’s value, fori =
1, . . . , k. There is a directed edge from(v1, v2, . . . , vk) to
(v′1, v′2, . . . , v′k) iff v′i = vi+1 for i = 1, . . . , k − 1. It can be
seen that the data graphD is a de Bruijn graph.

Definition 6. (CODE FOR REWRITING) A code for rewriting
has adecoding functionFd and anupdate functionFu. The
decoding functionFd : VM → VD maps a memory states ∈
VM to the stored dataFd(s) ∈ VD. The update function (which

1This is a special case of the generalized write-once memory model in [6].



represents a rewriting operation),Fu : VM ×VD → VM, maps
the current memory states ∈ VM and the new datav ∈ VD
to a memory stateFu(s, v) ∈ VM such thatFd(Fu(s, v)) = v.
Clearly, there should be a directed path froms to Fu(s, v) in the
memory graphM.

We note that ifFd(s) = v we may setFu(s, v) = s, which
corresponds to a case in which we do not need to change the
stored data. Throughout the paper we do not consider such a
case as a rewrite operation.

A sequence of rewrites is a sequence(v0, v1, v2 . . . ) such
that thei-th rewrite changes the stored data fromvi−1 to vi.
Given a storage code for rewritingC, we denote byt(C) the
number of rewrites thatC guarantees to support for all rewrite
sequences. Thus,t(C) is a worst-case performance measure
of the code. The codeC is said to beoptimal if t(C) is
maximized. On the other side, if a probabilistic model for
rewriting or randomization for code construction is used, the
expected rewriting performance can be defined accordingly.

In this paper, we study general rewriting for the flash-
memory model.2 We present a novel code construction, the
trajectory code, based on tracing the changes of data in the
data graphD. The code is asymptotically optimal (up to
constant factors) for a very wide range of scenarios. It includes
floating codes, WOM codes, and buffer codes as special cases,
and is a substantial improvement compared to known results.

We further study randomization and probability distributions
to data rewriting and study the expected performance. A code
is calledstrongly robustif its asymptotic expected performance
is optimal forall rewriting sequences. It is calledweakly robust
if the asymptotic expected performance is optimal for rewriting
following any i.i.d. distribution. We present a randomized
construction for strongly robust code and a deterministic
construction for weakly robust code.

Both our codes for general rewriting and our robust codes
are optimal up to constant factors (factors independent of the
problem parameters). Namely, for a constantr 6 1, we present
codesC for which t(C) is at leastr times that of the optimal
code. We would like to note that for our robust codes the
constant involved is arbitrarily close to 1.

The rest of the paper is organized as follows. In Section II,
related results are reviewed and compared to the results in this
paper. In Section III, a new code construction, thetrajectory
code, is presented and its optimality is analyzed. In Section IV,
robust codes are presented. In Section V we briefly discuss the
results of the paper.

II. OVERVIEW OF RELATED RESULTS

There has been a history of distinguished theoretical study
on constrained memories. It includes the original work by
Kuznetsov and Tsybakov on coding for defective memo-
ries [15]. Further developments on defective memories in-
clude [10], [12]. The write once memory (WOM) [18], write

2The codes here are more suitable for NOR flash memories, which allow
random access of cells. NAND flash memories have much more restricted
access modes for cell pages, which limit usable coding schemes on rewriting.

unidirectional memory (WUM) [19]–[21], and write efficient
memory [1], [9] are also special instances of constrained
memories. Among them, WOM is the most related to the flash
memory model studied in this paper.

Write once memory (WOM) was studied by Rivest and
Shamir in their original work [18]. In a WOM, a cell’s state can
change from 0 to 1 but not from 1 to 0. This model was later
generalized with more cell states in [6], [8]. The objective of
WOM codes is to maximize the number of times that the stored
data can be rewritten. A number of very interesting WOM code
constructions have been presented over the years, including the
tabular codes, linear codes, etc. in [18], the linear codes in [6],
the codes constructed using projective geometries [17], and the
coset coding in [5]. Profound results on the capacity of WOM
have been presented in [8], [11], [18], [22]. Furthermore, error-
correcting WOM codes have been studied in [25]. In all the
above works, the rewriting model assumes no constraints on
the data, namely, the data graphD is a complete graph.

With the increasing importance of flash memories, the flash
memory model was proposed and studied recently in [2], [13].
The rewriting schemes include floating codes [13], [14] and
buffer codes [2]. Both types of codes use the joint coding of
multiple variables for better rewriting capability. Their data
graphsD are generalized hypercubes and de Bruijn graphs,
respectively. Multiple floating codes have been presented,
including the code constructions in [13], [14], the flash codes
in [16], [24], and the constructions based on Gray codes in [7].
The floating codes in [7] were optimized for the expected
rewriting performance.

Compared to existing codes, the codes in this paper are
not only for a more general rewriting model, but also pro-
vide asymptotically-optimal performance for a wider range
of cases. This can be seen clearly from Table I, where the
asymptotically-optimal codes are summarized.

III. T RAJECTORYCODE

We use the flash memory model of Example 2 and the
generalized rewriting model of Definition 3 in the rest of this
paper. We first present a novel code construction, thetrajectory
code, then show its asymptotically-optimal performance.

A. Trajectory Code Outline

Let n0, n1, n2, . . . , nd be d + 1 positive integers and let
n = ∑d

i=0 ni, wheren denotes the number of flash cells, each
of q levels. We partition then cells into d + 1 groups, each
with n0, n1, . . . , nd cells, respectively. We call themregisters
S0, S1, . . . , Sd, respectively.

Our encoding uses the following basic scheme: we start by
using registerS0, called theanchor, to record the value of the
initial datav0 ∈ VD. For the nextd rewrite operations we use
a differential scheme: denote byv1, . . . , vd ∈ VD the nextd
values of the rewritten data. In thei-th rewrite,1 6 i 6 d, we
store in registerSi the identity of the edge(vi−1, vi) ∈ ED.
We do not require a unique label for all edges globally, but
rather require thatlocally, for each vertex inVD, its out-going



TABLE I
A SUMMARY OF THE CODES FOR REWRITING WITH ASYMPTOTICALLY

OPTIMAL PERFORMANCE(UP TO CONSTANT FACTORS). HERE n, k, `, L
ARE AS DEFINED IN EXAMPLES 2, 4, 5.

TYPE ASYMPTOTIC OPTIMALITY REF.
WOM code (D is t(C) is asymptotically optimal [18]
a complete graph)
WOM code (D is t(C) is asymptotically optimal [6]
a complete graph) when ` = Θ(1)
floating code (D t(C) is asymptotically optimal [13]
is a hypercube) when k = Θ(1) and ` = Θ(1) [14]
floating code (D t(C) is asymptotically optimal [13]
is a hypercube) when n = Ω(k log k) and ` = [14]

Θ(1)
floating code (D t(C) is asymptotically optimal [24]
is a hypercube) when n = Ω(k2) and ` = Θ(1)
buffer code (D is t(C) is asymptotically optimal [2]
a de Bruijn graph) when n = Ω(k) and ` = Θ(1) [23]
floating code (D weakly robust codes [7]
is a hypercube) when k = Θ(1) and ` = 2
WOM code (D is t(C) is asymptotically optimal this
a complete graph) when n = Ω(log2 `) paper
more general t(C) is asymptotically optimal this
coding (D has when n = Ω(L), or whenn = paper

maximum out- Ω(log2 L) and ∆ = O( n log n
log L ).

degree∆. For When n = Ω(log2 L), t(C) is
floating codes, asymptotically optimal in
∆ = k(`− 1).) the worst case sense (worst

case over all data graphsD).
robust coding Strongly robust codes when this

L2 log L = o(qn). Weakly paper
robust codes whenL = Θ(1).

edges have unique labels from{1, . . . , ∆}, where∆ denotes
the maximal out-degree in the data graphD.

Intuitively, the first d rewrite operations are achieved by
encoding thetrajectory taken by the input sequence starting
with the anchor data. Afterd such rewrites, we repeat the
process by rewriting the next input fromVD in the anchorS0,
and then continuing withd edge labels inS1, . . . , Sd.

Let us assume a sequence ofs rewrites have been stored
thus far. To decode the last stored value all we need to know
is s mod (d + 1). This is easily achieved by usingdt/qe
more cells (not specified in the previousd + 1 registers), where
t is the total number of rewrite operations we would like to
guarantee. For thesedt/qe cells we employ a simple encoding
scheme: in every rewrite operation we arbitrarily choose one
of those cells and raise its level by one. Thus, the total level
in these cells equalss.

The decoding process takes the value of the anchorS0
and then follows(s− 1) mod (d + 1) edges which are read
consecutively fromS1, S2, . . . . Notice that this scheme is
appealing in cases where the maximum out-degree ofD is
significantly lower than the state spaceVD.

Note that each registerSi, for i = 0, . . . , d, can be seen as a
smaller rewriting codewhose data graph is acomplete graph
of eitherL vertices (forS0) or ∆ vertices (forS1, . . . , Sd). We

let d = 0 if D is a complete graph, and describe how to setd
whenD is not a complete graph in section III-C. The encoding
used by each register is described in the next section.

B. Analysis for a Complete Data Graph

In this section we present an efficiently encodable and
decodable code that enables us to store and rewrite symbols
from an input alphabetVD of size L > 2, and whereD is a
complete graph. The information is stored inn flash cells of
q levels each. (To use the code for registerSi with i > 0, we
just need to replaceL by ∆.)

We first state a scheme that allows approximatelynq/8
rewrites in the case in which2 6 L 6 n. We then extend it to
hold for generalL and n. We present the quality of our code
constructions (namely the number of possible rewrites they
perform) using theΘ( f ) notation. Here, for functionsf and
g, we say thatg = Θ( f ) if g is asymptotically bounded both
above and below byf up to a constant factor independent of
the variables off and g.

1) The Case2 6 L 6 n: In this section we present a code
for small values ofL. The code we present is essentially the
one presented in [18].

Construction 7. Let 2 6 L 6 n. This construction is an
efficiently encodable and decodable rewriting codeC for a
complete data graphD with L states, and flash memory with
n cells withq states each.

Let us first assumen = L. Denote then cell levels by~c =
(c0, c1, . . . , cL−1), whereci ∈ {0, 1, . . . , q − 1} is the level of
the i-th cell for i = 0, 1, . . . , L − 1. Denote the alphabet of
data byVD = {0, 1, . . . , L − 1}. We first use only cell levels
0 and 1, and the data stored in the cells is∑L−1

i=0 ici (mod L).
With each rewrite, we increase the minimum number of cell
levels from 0 to 1 so that the new cell state represents the new
data. (Clearly,c0 remains untouched as 0.) When the code can
no longer support rewriting, we increase all cells (includingc0)
from 0 to 1, and start using cell levels 1 and 2 to store data in the
same way as above, except that the data stored in the cells uses
the formula∑L−1

i=0 i(ci − 1) (mod L). This process is repeated
q− 1 times in total. The general decoding function is therefore
defined as

Fd(~c) =
L−1

∑
i=0

i(ci − c0) (mod L).

We now extend the above code ton > L cells. We divide
the n cells intob = bn/Lc groups of sizeL (some cells may
remain unused). We first apply the code above to the first group
of L cells, then to the second group, and so on.

Theorem 8. Let 2 6 L 6 n. The codeC in Construction7
guaranteest(C) = n(q− 1)/8 = Θ(nq) rewrites.

Proof: First assumen = L. When cell levelsj− 1 and j
are used to store data (forj = 1, . . . , q − 1), by the analysis
in [18], even if only one or two cells increase their levels with
each rewrite, at least(L + 4)/4 rewrites can be supported. So
the L cells can support at least(L+1)(q−1)

4 rewrites. Now let
n > L. When b = bn/Lc, it is easy to see thatbL > n/2.



The b groups of cells can guaranteet(C) = b(L+4)(q−1)
4 >

n(q−1)
8 = Θ(nq) rewrites.
2) The Case of LargeL: We now consider the typical

setting in whichL is larger thann. The rewriting code we
present reduces the general case to that of the casen = L
studied above. We start by assuming thatn < L 6 2

√
n. We

will address the general case at the end of this section.
Let b be the smallest positive integer value that satisfies

bn/bcb > L.

Claim 9. For 16 6 n 6 L 6 2
√

n it holds that

b 6 2 log L
log n

.

Proof: We first note that for all1 6 x 6
√

n
2 , we have

bn/xcx > nx/2. Since16 6 n 6 L 6 2b
√

nc, it is easy to
verify that indeed

2 log L
log n

6
√

n
2

.

Therefore,
⌊

n log n
2 log L

⌋ 2 log L
log n

> n
log L
log n = L,

which implies the upper bound.

Construction 10. Let n < L 6 2
√

n. This construction is
an efficiently encodable and decodable rewriting codeC for a
complete data graphD with L states, and flash memory withn
cells withq states each.

For i = 1, 2, . . . , b, let vi be a symbol from an alphabet of
sizebn/bc > L1/b. We may represent any symbolv ∈ VD as
a vector of symbols(v1, v2, . . . , vb). Partition then flash cells
into b groups, each withbn/bc cells (some cells may remain
unused). Encoding the symbolv into n cells is equivalent to
the encoding of eachvi into the corresponding group ofbn/bc
cells. As the alphabet size of eachvi equals the number of cells
it is to be encoded into, we can use Construction7 to storevi.

Theorem 11. Let 16 6 n 6 L 6 2
√

n. The codeC in
Construction10guarantees

t(C) =
n(q− 1) log n

16 log L
= Θ

(
nq log n

log L

)

rewrites.

Proof: Using Construction 10, the number of rewrites
possible is bounded by the number of rewrites possible for
each of theb cell groups. By Theorem 8 and Claim 9, this is
at least

⌊n
b

⌋
· q− 1

8
>

(
n log n
2 log L

− 1
)

q− 1
8

= Θ
(

nq log n
log L

)
.

C. Analysis for a Bounded Out-Degree Data Graph

We now return to the outline of the trajectory code from
Section III-A and apply it in full detail using the codes from
Section III-B2 to the case of data graphsD with bounded out-
degree∆. We refer to such graphs as∆-restricted. To simplify
our presentation, in the theorems below we will again use
the Θ( f ) notation freely, however, as opposed to the previous
section we will no longer state or make an attempt to optimize
the constants involved in our calculations. We assume that
n 6 L 6 2

√
n. Notice that forL 6 n, Construction 7 can be

used to obtain optimal codes (up to constant factors).
Using the notation of Section III-A, to realize the trajectory

code we need to specify the sizesni and the value ofd. We
consider two cases: the case in which∆ is small compared to
n, and the case in which∆ is large.

Construction 12. Let ∆ 6
⌊

n log n
2 log L

⌋
. We build an efficiently

encodable and decodable rewriting codeC for any∆-restricted
data graphD with L vertices andn flash cells ofq levels as
follows. For the trajectory code, letd = blog L/ log nc =
Θ(log L/ log n). Set the size of thed + 1 registers ton0 =
bn/2c andni = bn/(2d)c > ∆ for i = 1, . . . d. (We obviously
have∑ ni 6 n.)

The update and decoding functions of the trajectory codeC
are defined as follows: Consider using the encoding scheme
specified in Construction10 for the encoding of symbols from
VD in then0 flash cells ofS0 corresponding to the anchor, and
using the scheme specified in Construction7 for the encoding
of one of {1, . . . , ∆} in the flash cells ofSi (i = 1, . . . , d).
Notice that the latter is possible asni > ∆ for i = 1, . . . d.

Theorem 13. Let ∆ 6
⌊

n log n
2 log L

⌋
. The codeC of Construc-

tion 12guaranteest(C) = Θ(nq) rewrites.

Proof: By Theorems 11 and 8, the number of rewrites
possible inS0 is equal (up to constant factors) to that ofSi
(i > 1):

Θ
(

n0q log n0

log L

)
= Θ

(
nq log n

log L

)
= Θ

(nq
d

)
= Θ (niq)

Thus the total number of rewrites in the scheme outlined in
Section III-A is d + 1 times the bound for each registerSi,
and sot(C) = Θ(nq).

Construction 14. Let
⌊

n log n
2 log L

⌋
6 ∆ 6 L. We build an

efficiently encodable and decodable rewriting codeC for any
∆-restricted data graphD with L vertices andn flash cells
of q levels as follows. For the trajectory code, letd =
blog L/ log ∆c = Θ(log L/ log ∆). Set the size of the reg-
isters ton0 = bn/2c andni = bn/(2d)c for i = 1, . . . d.

The update and decoding functions of the trajectory codeC
are defined as follows: Consider using the encoding scheme
specified in Construction10 for both the encoding of symbols
from VD in then0 flash cells ofS0 corresponding to the anchor,
and the encoding of one of{1, . . . , ∆}in the flash cells ofSi
(i = 1, . . . , d).



Theorem 15. Let
⌊

n log n
2 log L

⌋
6 ∆ 6 L. The codeC of Construc-

tion 14guaranteest(C) = Θ
(

nq log n
log ∆

)
rewrites.

Proof: By Theorem 11, the number of rewrites possible
in S0 is:

Θ
(

n0q log n0

log L

)
= Θ

(
nq log n

log L

)

Similarly the number of rewrites possible inSi (i > 1):

Θ
(

niq log ni
log ∆

)
= Θ

(
nq log n
d log ∆

)
= Θ

(
nq log n

log L

)
.

Here we use the fact that asd 6 log L it holds thatd = o(n)
and log ni = Θ(log n − log d) = Θ(log n). Notice that the
two expressions above are equal. Thus, as in Theorem 13,
we conclude that the total number of rewrites in the scheme
outlined in Section III-A isd + 1 times the bound for each
registerSi, and sot(C) = Θ

(
nq log n

log ∆

)
.

D. Optimality of the Schemes

We describe upper bounds on the number of rewrites in
general rewriting schemes to complement the lower bounds
induced by our constructions.

Theorem 16. Any rewriting codeC that stores symbols from
some data graphD in n flash cells ofq levels supports at most
t(C) 6 n(q− 1) = O(nq) rewrites.

Proof: The bound is trivial. In the best case, all cells are
initialized at level0, and every rewrite increases exactly one
cell by exactly one level. Thus, the total number of rewrites
is bounded byn(q− 1) = O(nq) as claimed.

For large values ofL, we can improve the upper bound.
First, let r denote the largest integer such that

(r+n−1
r

)
<

L− 1. We need the following technical claim.

Claim 17. For all 1 6 n < L− 1, it holds that

r > max
{⌊

log(L− 1)
1 + log n

⌋
, 1

}
.

Proof: First, it is easy to see thatr > 1 since
(

1 + n− 1
1

)
= n < L− 1.

Next, when
⌊

log(L−1)
1+log n

⌋
> 1 we may use the well-known

bound for allv > u > 1,
(

v
u

)
<

( ev
u

)u
,

wheree is the base of the natural logarithm. Thus,

(⌊
log(L−1)
1+log n

⌋
+ n− 1

⌊
log(L−1)
1+log n

⌋
)

<


 e

⌊
log(L−1)
1+log n

⌋
+ en− e

⌊
log(L−1)
1+log n

⌋



⌊
log(L−1)
1+log n

⌋

6 (en)
log(L−1)
1+log n = L− 1,

which proves our claim.

Theorem 18. Whenn < L− 1, any rewriting codeC that stores
symbols from some data graphD in n flash cells ofq levels

supports at mostt(C) = O
(

nq log n
log L

)
rewrites.

Proof: Let us examine some states of the n flash cells,
currently storing some valuev ∈ VD, i.e., Fd(s) = v. Having
no constraint on the input transition graph, the next symbol
we want to store may be any of theL− 1 symbolsv′ ∈ VD,
v′ 6= v.

If we allow ourselvesr operations of increasing a single cell
level of then flash cells (perhaps, operating on the same cell
more than once), we may reach

(n+r−1
r

)
distinct new states.

However, by our choice
(n+r−1

r
)

< L− 1 and so we need at
leastr + 1 such operations in the worst case. Since we have
a total of n cells with q levels each, the number of rewrite
operations is upper bounded by

t(C) 6 n(q− 1)
r + 1

6 n(q− 1)⌊
log(L−1)
1+log n

⌋
+ 1

= O
(

nq log n
log L

)
.

Theorem 19. Let ∆ >
⌊

n log n
2 log L

⌋
. There exist∆-restricted data

graphsD over a vertex set of sizeL, such that any rewriting
codeC that allows the representation of the corresponding∆-
restricted data inn flash cells ofq levels supports at most

t(C) = O
(

nq log n
log ∆

)
rewrites.

Proof: We start by showing that∆-restricted graphsD
with certain properties do not allow rewriting codesC that
support more thant(C) = O

(
nq log n

log ∆

)
rewrites. We then show

that such graphs do indeed exist. This will conclude our proof.
Let D be a ∆-restricted graph whose diameterd is at

most O
(

log L
log ∆

)
. Assuming the existence of such a graphD,

consider (by contradiction) a rewriting codeC, for the ∆-
restricted data described byD, that allowst(C) = ω

(
nq log n

log ∆

)

rewrites. We useC to construct a rewriting codeC ′ for a new
data graphD′ which has the same vertex setVD′ = VD but is
a complete graph. The codeC ′ will allow t(C ′) = ω

(
nq log n

log L

)

rewrites, a contradiction to Theorem 18. This will imply that
our initial assumption regarding the quality of our rewriting
codeC is false.

The rewriting codeC ′ (defined by the decoding functionF′d
and the update functionF′u) is constructed bymimicking C
(defined by the decoding functionFd and the update function
Fu). We start by settingF′d = Fd. Next, let s be some state of
the flash cells. DenoteFd(s) = F′d(s) = v0 ∈ VD. Consider
a rewrite operation attempting to store a new valuev1 ∈ VD,
v1 6= v0. There exists a path inD of length at mostd′ 6 d
from v0 to v1 which we denote byv0, u1, u2, . . . , ud′−1, v1.
We now define

F′u(s, v1) = Fu(Fu(. . . Fu(Fu(s, u1), u2) . . . , ud′−1), v1),

which simply states that to encode a new valuev1 we follow
the steps taken by the codeC on a short path fromv0 to v1
in the data graphD.



As C allows t(C) = ω
(

nq log n
log ∆

)
rewrites, the code forC ′

allows at least

t(C ′) = ω

(
nq log n
d log ∆

)
= ω

(
nq log n

log L

)

rewrites. Here we use the fact thatd = O
(

log L
log ∆

)
.

It is left to show the existence of data graphsD of maximum
out-degree∆ whose diameterd is at mostO

(
log L
log ∆

)
. Such

graphs exist for any∆ >
⌊

n log n
2 log L

⌋
> ω(log3 L) (recall our

setting of L 6 2
√

n). Namely, consider the distributionGL,p
over graphsG = (V, E) in which |V| = L and each pair
(v1, v2) in V × V is chosen to be inE independently with
probability p. For pL = ω(log3 L), in [3] (Chapter 10) it is
shown that with high probability the maximum degree inG
is ∆ 6 2pL and the diameterd of G is at most2 log L

log pL . This
implies the existence of graphsG with maximum degree∆
and diameterO

(
log L
log ∆

)
as desired.

IV. ROBUST CODE

When rewriting is a random process, it is interesting to
design codes with good expected performance. We can also
use randomized code constructions to improve the expected
performance. In this section, we study two types of such codes,
the strongly robust codesand theweakly robust codes. As
before, we focus on the flash memory model, wheren cells
of q levels store the data from a data graphD of L vertices.

A strongly robust codeis a randomized code that maximizes
the expected number of supported rewrites foreveryrewriting
sequence. In this section, we present a code such that for every
rewriting sequence, the expected number of supported rewrites
is n(q− 1)− o(nq). It is clearly strongly robust.

We define aweakly robust codeto be a code that maxi-
mizes the expected number of supported rewrites forevery
rewriting model that follows an i.i.d. distribution, specified
as follows. Let{0, 1, . . . , L − 1} denote the alphabet of the
data. Letp0, p1, . . . , pL−1 be L positiveprobabilities such that
∑L−1

i=0 pi = 1. Assume that events happen only at discrete
timest1, t2, t3, . . . , and at timetj (for j = 1, 2, 3, . . . ), the data
follows an i.i.d. distribution: it has valuei with probability pi,
for i = 0, 1, . . . , L− 1. If at time tj, the data changes to a value
different from that of timetj−1, then there is a rewrite. Clearly,
if at some moment the data isi, the next rewrite will change
it to j 6= i with probability pj/ ∑k∈{0,...,i−1,i+1,...,L−1} pk. In
this section, we present adeterministiccode such that for
any positive probability set(p0, p1, . . . , pL−1), the expected
number of supported rewrites isn(q− 1)− o(nq). This code
is clearly weakly robust.

A. Code Construction

In the trajectory code, the basic building block is a code
whose data graphD is a complete graph and wheren > L.
In this section, we focus on robust codes withn > L. There
is no restriction on their data graphs. The robust codes can be
used as the building blocks in the trajectory code.

Let (c1, c2, . . . , cn) denote then cell levels in the flash
memory model. Given~c = (c1, c2, . . . , cn), define itsweight
w(~c) as w(~c) = ∑n

i=1 ci. Clearly, 0 6 w(~c) 6 (q − 1)n.
Given the decoding functionFd, the cell state~c represents
some symbolFd(~c) ∈ {0, 1, . . . , L− 1}. We now present a
code construction.

Construction 20. Choose parametersθi,j and ai from the set
{0, 1, . . . , L− 1} for all 0 6 i 6 n(q − 1) − 1 and1 6 j 6
n. The specific values ofθi,j and ai will determine the code’s
performance. Given a cell state~c = (c1, c2, . . . , cn),

Fd(~c) =

(
n

∑
i=1

θw(~c)−1,ici +
w(~c)−1

∑
i=0

ai

)
mod L.

By default, if~c = (0, 0, . . . , 0), thenFd(~c) = 0.

For simplicity, we will omit the term “mod L” in all com-
putations below that consist of values of data. For example,
the formula in the above construction will be simply written
as Fd(~c) = ∑n

i=1 θw(~c)−1,ici + ∑w(~c)−1
i=0 ai, and Fd(~c)− Fd(~c′)

will mean Fd(~c)− Fd(~c′) mod L.
Given a cell state~c = (c1, . . . , cn), define itsi-th neighbor

as Ni(~c) = (c1, . . . , ci−1, ci + 1, ci+1, . . . , cn) (provided that
the cell stateNi(~c) exists), for i = 1, . . . , n. There is a
directed edge in the memory graphM from vertex~c to vertex
Ni(~c). Call this edge thei-th outgoing edge of~c and thei-th
incoming edge ofNi(~c). Define ei(~c) = Fd(Ni(~c)) − Fd(~c),
and callei(~c) ∈ {0, 1, . . . , L− 1} the value of this edge. Let
ψ(~c) = |{ei(~c) | i = 1, 2, . . . , n}|, and callψ(~c) the diversity
of ~c. Note thatψ(~c) is the number of different values that the
outgoing edges of~c take. For efficient rewriting, it is beneficial
for ψ(~c) to be large.

Lemma 21. Let~c = (c1, . . . , cn) be a cell state such thatci <
q− 1 for i = 1, . . . , n. With Construction20,

ψ(~c) =
∣∣{θw(~c),i | i = 1, 2, . . . , n

}∣∣ .

Proof: We have

ei(~c) = Fd(Ni(~c))− Fd(~c)

=
n

∑
j=1

θw(~c),jcj + θw(~c),i +
w(~c)

∑
j=0

aj

−
n

∑
j=1

θw(~c)−1,jcj −
w(~c)−1

∑
j=0

aj

= θw(~c),i + aw(~c) +
n

∑
j=1

(θw(~c),j − θw(~c)−1,j)cj

Only the first term,θw(~c),i, depends oni. Hence, ψ(~c) =
|{ei(~c) | i = 1, 2, . . . , n}| =

∣∣{θw(~c),i | i = 1, 2, . . . , n
}∣∣.

So to makeψ(~c) large, it is sufficient to choose parameters
in Construction 20 such that

∣∣{θw(~c),i | i = 1, 2, . . . , n
}∣∣ is

large. We now analyze the robustness of the construction.



B. Strong Robustness

In this subsection, for succinctness, we analyze a simplified
version of Construction 20. (The general construction can
have more variations, and the analysis here can be readily
used for it.) Assumen > L. For i = 1, 2, . . . , L, define
gi = {j | 1 6 j 6 n, j ≡ i (mod L)}. For example, ifn =
8, L = 3, then g1 = {1, 4, 7} , g2 = {2, 5, 8} , g3 = {3, 6}.
Also definehi = ∑j∈gi

cj, wherecj is the j-th cell level. In
the following construction, the cells in the same setgi work
as a “super cell.”

Construction 22. (STRONGLY-ROBUST CODE) For all 0 6
i 6 n(q − 1) − 1, choose the parameterai independently and
uniformly at randomfrom {0, 1, . . . , L− 1}. Given a cell state
~c = (c1, c2, . . . , cn), set

Fd(~c) =
L

∑
i=1

ihi +
w(~c)−1

∑
i=0

ai.

For every rewrite, change the cells to a new state such that this
new cell state represents the new data value and its weight is
minimized. (If there is a tie, break it arbitrarily.)

The above code has a randomized construction that uses the
random numbersa0, a1, . . . , an(q−1)−1. These random numbers
are stored in separate cells from the code, and are unrelated
(that is, unknown) to the rewriting sequences. They are gener-
ated only once and can be used by many codes with the same
construction, so their cost can be omitted.

Lemma 23. Let n > L. Let~c = (c1, . . . , cn) be a cell state such
thathi < (q− 1) |gi| for i = 1, . . . , L. (|gi| is the cardinality of
the setgi.) With Construction22, if ~c is the current cell state,
no matter what value the next rewrite changes the data to, the
rewrite increases the weight of the cell state only by one, and it
increaseshi by one with probability1

L for all i ∈ {1, . . . , L}.
Proof: From Construction 22, we can see that if

we increase hi by one, the data value will increase
by i + aw(~c) (modulo L), for i ∈ {1, . . . , L}. Since{

i + aw(~c) | i = 1, . . . , L
}

= {0, 1, . . . , L− 1}, the rewrite
will increase exactly one cell level by one. Sinceaw(~c) is
uniformly random over{0, 1, . . . , L− 1}, so is i + aw(~c). So
the rewrite will increasehi by one with probability1

L .
The above lemma applies toall rewriting sequences.

Theorem 24. Let L2 log L = o(qn), and n mod L
L = o(1). For

a codeC of Construction22, for every rewriting sequence, the
expected number of rewrites it supports isn(q− 1)− o(nq).

Proof: ConsiderL bins that can, respectively, contain(q−
1) |g1| , (q − 1) |g2| , . . . , (q − 1) |gL| balls. Usehi to denote
the number of balls in thei-th bin, and increasinghi by one
is the same as throwing a ball into thei-th bin. Note that
every bin can contain at least(q− 1) · b n

L c balls and at most
(q − 1) · d n

L e balls. By Lemma 23, before any bin is full, a
rewrite throws a ball uniformly at random into theL bins. The
rewriting process can always continue before any bin becomes
full. Thus, the number of rewrites supported by the codeC is

at least the number of balls thrown to make at least one bin
full.

Suppose thatn(q − 1) − c
√

n(q− 1) balls are uniformly
randomly thrown intoL bins, and there is no limit on the
capacity of any bin. Herec is sufficiently large andL2 log L =
o(c2), c2 = o(qn). For i = 1, . . . , L, let xi denote the number
of balls thrown into thei-th bin. Clearly,E[xi] = n(q−1)

L −
c
√

n(q−1)
L . By the Chernoff bound, whennq is sufficiently

large, the probability that thei-th bin contains more than(q−
1) · b n

L c balls is less thane−Ω(c2/L2). By the union bound,
the probability that one or more of theL bins contain more
than (q − 1) · b n

L c balls is less thanLe−Ω(c2/L2). Since c is

sufficiently large andL2 log L = o(c2), Le−Ω(c2/L2) = o(1).
So whenn(q − 1) − c

√
n(q− 1) balls are uniformly ran-

domly thrown into L bins, with high probability, all theL
bins have(q − 1) · b n

L c or fewer balls. Sincen(q − 1) −
c
√

n(q− 1) = n(q− 1)− o(nq), we get the conclusion.
Note that the number of rewrites can never exceedn(q− 1).

Theorem 24 shows that asymptotically (inq andn), Construc-
tion 22 is strongly robust under mild conditions.

C. Weak Robustness

We now consider a deterministic version of Construction 20.

Construction 25. (WEAKLY ROBUST CODE) Given a cell
state~c = (c1, c2, . . . , cn),

Fd(~c) =
L

∑
i=1

ihi +
w(~c)−1

∑
i=0

i.

For every rewrite, change the cells to a new state such that
this new cell state represents the new data value and its weight
is minimized. (If there is a tie, break it arbitrarily.)

Theorem 26. Let L > 3 be a constant and letn be a multiple
of L. For a codeC of Construction25, for any i.i.d. rewriting
model with a positive probability set(p0, p1, . . . , pL−1), the
expected number of rewrites it supports isn(q− 1)− o(nq).

Proof: For i = 1, 2, . . . , L, let us see the cells in the
set gi as a “super cell” of (q − 1)|gi| + 1 levels. Then
we can see~c = (h1, h2, . . . , hL) as the state of theseL
super cells, wherehi is the level of thei-th super cell. For
i = 1, 2, . . . , L, if we increasehi by one, the data’s value
will be increased by(∑L

j=1 jhj + i + ∑w(~c)
j=0 j) − (∑L

j=1 jhj +

∑w(~c)−1
j=0 j) = i + w(~c) ( mod L). Let us callu(~c) = (1 +

w(~c), 2 + w(~c), . . . , L + w(~c)) theupdate vectorof the super-
cell state~c = (h1, h2, . . . , hL). Before any super-cell reaches
its highest level, a rewrite will increase the weight of the
cell state by only one. So it is easy to see that initially,
~c = (0, 0, . . . , 0) and u(~c) = (1, 2, . . . , L − 1, 0); after one
rewrite,u(~c) = (2, 3, . . . , L− 1, 0, 1); after the second rewrite,
u(~c) = (3, 4, . . . , L − 1, 0, 1, 2); and so on. After exactlyL
rewrites,u(~c) = (1, 2, . . . , L− 1, 0) again. The update vector
shifts cyclically with a period ofL.

We model the rewriting process as a Markov chain as
follows. Every state in the Markov chain is represented by



a pair (V ;~u), whereV ∈ {0, 1, . . . , L− 1} is the value of the
data at a given time, and~u is the update vector of the super-cell
state at that same time. SinceV can takeL values and~u can
take L values, there are totallyL2 states in the Markov chain.
A state can transit to another state iff a rewrite can make such
a change happen. (We assume that no super-cell has any upper
bound on its cell level.) A state(V ;~u) can transit to the state
(V ′;~u′) if and only if V ′ 6= V and~u′ is the next cyclic shift of
~u, and the transit probability is pV′

∑i∈{0,1,...,L−1}−{V} pi
> 0. Clearly,

such a Markov chain is irreducible, positive recurrent, and has
a period ofL (because the update vectors have a period ofL).

Let z → ∞ be a positive integer. We consider a se-
quence ofd√zeL + zL2 + L rewrites, which we divide into
L + 1 pieces. The first piece is the firstd√zeL rewrites.
For i = 2, 3, . . . , L + 1, the i-th piece is the following
zL + 1 rewrites. We consider the rewrite sequences from
the given i.i.d. rewriting model. Clearly, asz increases, the
length of thesed√zeL + zL2 + L rewrites also increases.
It is easy to see that fori = 2, 3, . . . , L + 1, before the
first rewrite of thei-th piece happens, the update vector is
(1 + i − 2, 2 + i − 2, . . . , L + i − 2). So theL update vectors
at the beginning of theseL pieces of rewrites are all different.

The value of the data has a stationary distribution in the
Markov chain, which is(p0, p1, . . . , pL−1). So no matter what
the initial value of the data is, after many rewrites, it converges
to this stationary distribution. Now consider the second piece
of rewrites. Before the first rewrite of the second piece starts,
as z → ∞, the Markov chain is in the state(i; (1, 2, . . . , L))
with probability pi. Every transition in the Markov chain
corresponds to a rewrite, and the super-cell whose level is
increased by this transition is uniquely determined by the
two Markov-chain states determining this transition. So corre-
sponding to thezL + 1 rewrites in the second piece of rewrites,
the percentage that each transition happens also converges.
This implies the existence of a vector(x1, x2, . . . , xL) such
that ∑L

i=1 xi = zL + 1 and for i = 1, . . . , L, the i-th super-
cell’s level,hi, is increasedxi + o(xi) times during the second
piece of rewrites with high probability.

For j = 2, 3, . . . , L + 1, before the first rewrite of the
j-th piece of rewrites starts, the Markov chain is in the
state (i; (1 + j − 2, 2 + j − 2, . . . , L + j − 2)) with proba-
bility pi. By symmetry, for i = 1, . . . , L, hi is increased
xi+(j−2) mod L + o(xi+(j−2) mod L) times with high probability.
(In the previous expression, ifi + (j − 2) = L, then let
xi+(j−2) mod L be xL.) So over thezL2 + L rewrites of the
2nd, 3rd, . . . , L + 1-th pieces of rewrites,hi is increased
∑L

j=1 xj + o(∑L
j=1 xj) = zL + o(zL) times with high proba-

bility. Since d√ze = o(z), over the whole rewriting sequence
(of L + 1 pieces),hi is increasedzL + o(zL) times with high
probability. Since every super-cell has a maximum level of
n(q−1)

L , the number of rewrites it takes for any super-cell
to reach its maximum level isn(q − 1) − o(nq) with high
probability. So the expected number of rewrites that the code
C supports isn(q− 1)− o(nq).

The above theorem shows the weak robustness of the code
construction.

V. CONCLUDING REMARKS

In this paper, we present the trajectory code for rewrit-
ing and show its optimality. We also present a robust code
construction for the optimization of the expected rewriting
performance. It will be interesting to study more constrained
memory models and rewriting models, and also combine error
correction with the rewriting codes. That remains as our future
research.
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