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Abstract

NAND flash memories are the most widely used non-volatile memories, and data movement is common in flash storage
systems. We study data movement solutions that minimize the number of block erasures, which are very important for the
efficiency and longevity of flash memories. To move data amodpcks with the help ofA auxiliary blocks, where every block
containsm pages, we present algorithms that @g: - min{m,log, n}) erasures without the tool of coding. We prove this is
almost the best possible for non-coding solutions by presenting a nearly matching lower bound. Optimal data movement can be
achieved using coding, where on®(n) erasures are needed. We present a coding-based algorithm, which has very low coding
complexity, for optimal data movement. We further show the NP hardness of both coding-based and non-coding schemes when
the objective is to optimize data movement opex instancebasis.

I. INTRODUCTION

NAND flash memories are the most widely used non-volatile memories due to their high data density and efficiency. In a
NAND flash memory, cells are organized as blocks. A block has atutells, and a cell can store one or more bits. Every
block is partitioned into pages, where a page is the unit of a read or write operation. A prominent property of flash memories
is block erasure It means to change any stored data, the whole block must be erased first before rewriting. Block erasures
significantly decrease the longevity and the speed of flash memories, so it is very important to reduce them [5].

Flash memories often store a large amount of data, and data movement is very useful for reassembling files, wear leveling,
and in-place computation. We consider the basic form where the data in different pages need to be switched. This problem
was first studied in [10], where coding-based data movement is shown to minimize the number of erasures. In this paper, we
significantly extend the known results by rigorously proving the gain of coding, presenting efficient data movement algorithms,
and showing the NP hardness of per-instance optimization.

In the data movement problem, there aréolocks, where each block has pages of data. Themn pages of data need
to be moved into each other’s positions as requirddempty auxiliary blocks can be used to help data movement. The
objective is to minimize the number of block erasures in the data movement process. We present efficient algorithms that use
®(n -min{m,log, n}) erasures without the tool of coding. We prove it is nearly the best possible by proving a close lower
bound. Since coding-based solutions req@xg:) erasures, this result rigorously proves the benefit of coding.

We present a strictly optimal coding-based algorithm for= 1 with at most2n — 1 erasures. It has very low coding
complexity. We further show that if the objective is to optimize data movement on a per instance basis, the problem is NP hard
for both coding and non-coding schemes. Nevertheless, the coding technique in the above algorithm can be readily utilized in
any per-instance-optimal solution.

A number of recent works have studied coding for rewriting [4], [6], [7], [9], [12] and error correction [8], [11] in flash
memories at the cell level. There are also many works studying algorithms and data structures for flash data-storage systems [5]
This paper focuses on coding for data movement at the page level, and the results can be used to design more efficient flast
storage systems.

The rest of the paper is organized as follows. Section Il defines the data movement problem. Section Ill presents data
movement algorithms without coding. Section IV derives a lower bound for data movement without coding. Section V presents
an efficient coding scheme for optimal data movement. Section VI studies the complexity and approximation of per-instance
optimization. Section VII presents the conclusions.

IIl. NOTATIONS AND CONCEPTS

There aren blocks containing data, denoted By, ..., B,,. Every block consists ofr pages. Foi = 1,...,n, the pages
in B; are calledp; 1, ..., pim- FOrl <i<mnandl < j < m, the data originally stored ip;; is denoted byi; ;. There is a
function a:

o {1,...,n}x{1,...,m} = {1,...,n}

such thatv 1 <i < n, [{(a,b)|]1 <a<nl1<b<mualab)=i}| =m. Our objective is to move (i.e., write) the daigj

into a page in bIoclBa(i,j), for1 <i<nandl <j<m. There areA empty extra blocks, calleduxiliary blocks that we can

use to help move data. (Every auxiliary block also hapages.) For reliability, it is required that during the data-movement
process, the data in theget+ A blocks must always be sufficient for recovering all the original data. In the end, the auxiliary
blocks should return to the empty state. We measure the cost of data movement by the total number of block erasures. (Note



that changing any data in a block requires erasing the block first.) The solution that minimizes the number of erasures is called
optimal

There exist two types of solutions, namely, solutions with and without coding. In a solution without coding, data are simply
copied from page to page. In a coding-based solution, the data written into a page can be any function of the existing data.

Example 1. We show an example without coding where= 3, n = 4 andA = 2. Each page is indexed by its label (the
destination block), and its content (the card suit). For example the pages indekedlgy andl,, should be moved to the first

block. In the first step, the content of the first block is copied to the auxiliary memory, and the first block is then erased. In the
second step, the pages labeled with 1 are copied into the first block. In the third step, before erasing block 2, we 8grohly

4., to the auxiliary memory, because already appears in block 1. After several steps, we realize the desired data movement.
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It is known that coding-based solutions can optimize data movement [10], which use aRmmest erasures. We now
rigorously prove the gain of coding, and show efficient data-movement algorithms.

I1l. DATA MOVEMENT WITHOUT CODING

In this section, we present two algorithms for data movement without coding. They[lsg, n] + 37” and 5”77" erasures,
respectively. This shows that without codin@(n - min{m,log, n}) erasures are sufficient for data movement. Here we
assumeA > 2, because whe = 1 there are cases that cannot be solved without using coding [10].

A. Block-merging Algorithm

Given a positive integet, let [i] denote{1,2,...,i}. Call the A auxiliary blocksB,,,1,..., By a. Forn+1<i<n+A,
denote them pages inB; by p;1,...,pim. In the data movement process, data are copied from page to page. At any given
moment, if a page;, ; stores the datd the we usep; ; to denotex(i, j»). That is, the data in page; ; need to be
moved into blockBy, . in the end.

in,j2

Definition 2. LetS C [n + A]. The blocks{B;|i € S} are called “semi-sorted” if there exists a bijection functionS — S (that
is, a permutation of the elementsdpisuch that/ iy # i, € S andjy, jo € [m], if (i1) < 7(iz), theng;, ;; < @i, j,-

Let's use the help of semi-sorted blocks to move data. For simplicity, in the following we assism@epower ofA, namely,
n = A* for some integer. We will extend the results for generallater. As the beginning step, we partitigm] into n/A
subsetsSy, - - -, S, /4, Where|S;| = A for 1 <i < n/A. We createn/A sets of semi-sorted blocks as follows. We first copy
the data in{B;|i € S1} into the A auxiliary blocks{B;|n +1 < i < n + A} such that the block§B;|n +1 < i < n+ A}
become semi-sorted blocks. Then for= 2,...,1n/A, we erase the block§B;|j € S;_1}, and copy the data i§B;|j € S;}
into {B;|j € S;_1} such that the block$B;|j € S; 1} become semi-sorted. Finally we erase the blofRgi € S,,/5}. This
way, we have created/A sets of semi-sorted blocks usimgerasures.

Clearly, our final objective is to makéBy,-- -, B,} one big set of semi-sorted blocks. How can we combinenthé
smaller sets of semi-sorted blocks we already have to achieve this objective? LeTs, useT,,,, to denote oum/A sets
of semi-sorted blocks, and u§g to denote the set ok empty blocks. We first show how to combifig, - - - , T into one
bigger set of semi-sorted blocks. We copy data frém. .., T into the empty blocks (one empty block at a time) with the
following rule: “for two pagesp;, ;, andp;, ;, of Ty, ..., Ta, if ¢; ;; < ¢4, ,, then the data in page;, ;, is copied before the
data inp;, ;,.” (Note that for everyl; (1 <i < A), the data in it are already sorted, so they just need to be copied sequentially
block after block.) For a block ifT; (1 < i < A), once its data are all copied, we erase it so that it becomes empty and can
have data moved into it later. Can we keep moving data this way so that in the end, the @gta: in Ty are moved into
A? blocks, which are semi-sorted? The answer is yes, because in the above procedure there is always place to move data intc
Every time we have completely filled a number of empty blocks, if we look at the bloEks .in, Ty whose data have been
partially copied, their un-copied data together can fill at mast- 1 empty blocks. Since we haveempty blocks to begin
with, there is always an empty block to copy data into.

Using the same method, we can combine ahfé\ sets of semi-sorted blocks into/ A2 bigger sets of semi-sorted blocks.
By repeatedly using this approabbg, n times, we can get blocks that are semi-sorted. All left to do is to move the data
into their final positions, which takes at mdst/2 erasures. In total, this algorithm uses at mostg, 1 + 37” erasures. For
general values of, this algorithm uses at most/log, n] + % erasures.



B. Algorithm based on Block-permutation Sets
We now present an algorithm that us@énm) erasures.

Definition 3. A set ofn page1 j,, p2,j,, - - - Pu,j, 1S @ “block-permutation set” (1, j1),2(2,72),...,a(n,ju)} = [n].

It is known that thenm pages inBy, ..., B, can be partitioned into exactly block-permutation sets [10]. Without loss of
generality (w.l.o.g.), let's assume that foe=1,...,m, then pagesp;;, p2i, ..., pn,i form a block-permutation set. (Since a
block contributes exactly one page to every block-permutation set, this is just a matter of labelling.) By definition, the data of
then pages in a block-permutation set need to be permuted in thlecks B4, ..., B,. In the following, we use this property
to move data, using only two auxiliary blocks (which we will ¢8|}, and B, ).

Consider a block-permutation sgt ;, p>; . . ., p j- Since a permutation consists of “permutation cycles”, let's consider such
a cycle of lengthz < n: Piojs Pivjr -+ - r Pin_y - That is, fork =0,1,...,z =1, a(iy,j) = i(k+1) mod z- With the two auxiliary
blocks, we can move the data inside the cycle to their right places without moving any data outside the cycle. The basic idea
is that with one auxiliary block, we can cyclically shift the data inside the cycle. With the other auxiliary block, we can use
it to temporarily hold the data outside the cycle when the corresponding block is erased. Specifically, we can move the data
of the cycle to their right places this way:

1) Copy the dataiizfl,j from Pi,_1,j to Pn+1,-

Forj' € [m]\ {j}, copy the datal; i from p;  +1t0 p, ;.
EraseB; ..
2) Fork=z-2,z—-3,...,0, do:
a) Copy the datat; ; from p; ; to p;, ., .
b) Forj" € [m]\ {j}, copy the datal; , i from p,,5 to p;_ .
c) EraseB,.».
d) Forj" € [m]\ {j}, copy the datal; ; from p;_; t0 p, 2.
e) EraseB;;

3) Copy the datal; . ; from p,, 1, tod; ;.

Forj' € [m]\ {j}, copy the datal; s from p, 5 tO p;, .
EraseB,, .1 and B, .5.

With the outlined procedure, we can mavg@ages of data in a cycle usiryg + 1 erasures. In the same way, we can move
then pages of data in a block-permutation set using at ing® erasures. Furthermore, we can move allthe pages using
5nm/2 erasures.

We have designed another efficient data-movement algorithm, calletittfiging algorithm that allows straightforward
implementation in flash memories. We present it in the appendix. All in all, we conclude:

Theorem 4. Let A > 2. When coding is not used, the data movement problem can be solved using at most

3n bnm

min{n[log, n| + o T} = O(n-min{m,log, n})

erasures.

IV. ALOWERBOUND

In this section, we prove that without coding, a data-movement algorithm rf@éas min{m, (log, n)/(log, n)}) era-
surest Sincelog, 1 is practically a very small number, this lower bound is very close to the upper bound shown in Theorem 4.

A. Model

In this section, to simplify our notation, we use an equivalent model defined as follows: Our data is modeled-aérai A)
matrix A = (4;j)ux (n4a)- INitially, the data in the sub matrix consisting of the firstolumns contains all the elements in the
set[mn]; and the remaining (auxiliary) entries are empty. Namely, each ofithentries in the firsti columns have distinct
values, and alk € [mn] appear in these columns. The valuef a;; indicates that the data in page; needs to be moved to
locationi’,j’ wherex = (i’ — 1) + (j' — 1) xm (namely, — 1 = (x mod m) andj’ —1 = |x/m]). In other words, after the
data movement, the final matrig* will include the elements ofinn] in the firstn columns inincreasingorder; the remaining
A columns will be empty. We usB; to denote theset of valueshat appear in théth column of A (B; C [mn]). We assume
throughout thatA < n (otherwise the problems studied throughout this work become ftrivial).

In general, our objective is to perform operations to the initial mattixsuch that the data in each page is moved to
its corresponding location. We allow two types of operations:Gapyingdata from a current page to an empty page. This
corresponds to writing the value of an entry into a location that was previously empty. Copying data is thought of as a

IHere log) n is theiterated logrithmof #, which is defined as the number of times the logrithm function must be iteratively applied before the result is
less than or equal to 1. Namelpg) n = 1+ log), (log, 1) for n > A. Notice thatlogy n grows very slowly withn.



costless operation. (lgrasinga column of data. This corresponds to erasing the value of all entries in a given column. After
the operation, all entries in the given column will be empty. Erasing data is thought of as a costly operation. Given an initial
matrix, using the two operations above, our objective is to reacfithematrix A* specified above. In this section, we present
lower bounds on the number of erasures needed to reach this goal.

B. Proof outline

To prove our lower bounds, we consider the direatedfigurationgraphG = (S, E) of our process. The vertex sgtof our
graph will include all possible matrice4 that can be reached by performing operations (a) and (b) above on the initial matrix
A. To be precise, to allow a clean analysis, we will restrict ourselves to the set of matficesachable fromA, that have
exactly Am empty entries; and that the remaining: entries include the sdinn] (one entry per element). It is not hard to
verify that this is without loss of generality. On one hand for every [mn] our intermediate matri¥d’ must include an entry
of value x, otherwise we will not be able to reach the final matiiX. On the other, we may assume that there are exactly
Am empty entries as any valuec [mn] that appears in two positions is redundant. We define a slightly different operation
on our matrix that preserves the above restrictions and combines operations (a) and (b) abdeas@land copyErase a
column of data, and copy its content onto the empty locations in the matrix (these empty locations may include the currently
erased column). Our objective is, starting from our initial mattixto perform a minimum number of (ab) operations to reach
A*.

We have yet to define the edge #ebf our graphG. A pair (A’, A”) is a directed edge ifi if using a single (ab) operation
one can transform’ into A”. The distancebetween a matrixA and A* is the shortest path iG betweenA and A*, and
corresponds to the minimum number of (ab) operations needed to trangdfomo the desired matrixd*. We will show the
existence of an initial matrixA for which this distance is at least a certain lower bouind

Our proof has two steps. First, we show that the diamete® i at least/b (namely there exist two matrice4’ and A”
which arefar apart.

Theorem 5. The diameter o is at leastb = ©(n - min(m,log, n/ logj n)).
We then show that this suffices to prove our assertion.
Corollary 6. There exists a matrid such that the distance betwedrandA* is at leas®© (n - min(m,log, n/ logj n)).

The proof of Corollary 6 is fairly simple and is given in full detail below. The proof of Theorem 5 is more involved and an
outline followed by a detailed proof will be given after the proof of Corollary 6.

1) Proof of Corollary6: Proof: Let A’ and A” be the matrices anth be the bound from Theorem 5. LéfA’, A”)
denote the distance between two matrigésand A” in G. It holds (by our distance definition) thdfA’, A*) +d(A*, A”) >
d(A’,A”) > Ib. Thus eitherd(A’, A*) > 1b/2 and we are done (set = A’); or d(A*, A”) > Ib/2. Notice that in the latter
case our proof is not done as we wish to find a mattisuch thati(A, A*) is large, while we are in the case thHtA*, A)
is large (here we stress that the distarids not symmetric).

To overcome this difficulty we will define two matriced; and A, as follows. We start by noticing that there exists
a matrix, which we denote byi;, closeto A” for which the empty entries ofi; are all located in the lash columns.
More specifically,d(A”, A1) < A andd(A1, A”) < n. The matrix A; is obtained fromA” by movingall the non-empty
entries in the lasi\ columns to empty locations in the firstcolumns. Now it holds tha#(A*, A1) > Ib/2 — n (otherwise
d(A*, A") < d(A*, A1) +d(A1, A”) < 1b/2 which contradicts our assumption). Finally, we define a matrixcorresponding
to A; for which d(A;, A*) = d(A*, A1) > 1b/2 — n. Setting A to be equal taA, we conclude our proof.

The matrix A, is obtained from the matribd* by a permutation on the values @hin]; the permutation is defined by
the matrix A;. Specifically, lett be the permutation ofinn| such thatrt(A;) = A* (here for a matrixA = (a;;) we
define the(7, j)'th entry of t(A) ast(a;;)). Now settingA, = 71(A*) and noticing that for any permutation there is an
edge inG between two matriceX andY iff there is an edge inG betweenrt(X) and rz(Y), it holds thatd(A*, A;) =
d(rt(A*), (A1) = d(Ay, A*) > 1b/2 — n. We note that it is not hard to show the existence of a (different) matrsuch
that the distance betweefh and A* is at leastn (take any matrixA for which in each column some entry needs to be moved
to obtain A*). Thus, for the corollary, we obtain a bound wfax(1b/2 — n,n) = ©(n - min(m,log, 1/ log) n)). |

2) Outline for proof of Theorerd: To prove Theorem 5 (our lower bound on the diameteGdfve use a variation of the
following naive idea. For a matrid, let d 4 be theout-degreeof A in G. Assume one could prove tha}, is bounded byD
for all matricesA € S. This implies that avalk of length ¢ in G starting fromA can reach at mosb‘ different matrices of
S. One can now deduce that the diameteiGofs at least the smallegtsuch thatD’ > |S|; or in other worddb > logp, |S|.

Applying this proof technique “as is” on our grapgh will not yield a lower bound greater tham We thus consider two
modifications. First of all, we consider a slightly different graph= (S’, E’), which is a homomorphic image @. Namely,
for a given matrixA € S let B; be the set values that appear in tfte column of A. We will identify A with the tuple
Bs = (By,...,Byia); andS’ = {B4 | A € S} will consist of the set of such tuples. Two tuplBs= (By,...,B, ) and
B' = (Bj,..., B, ,) are connected by a directed edgefhiff there exists matricesA and A" with corresponding tuples



and B’ that are connected 6. It is not hard to verify that the diameter 6f is no less than the diameter &f. (In fact, we
can also show that the diameter @fis no more than the diameter 6F plusn + A. So the two diameters are the same up to
an additive factor ofz + A.) We conclude that a lower bound &f( - min(m,log, n/ log, 1)) for the diameter oG’ will
imply the same lower bound fdg.

Up to this point we have discussed the first variation of the naive idea presented above: replacing thé bsagH.
However, bounding the degrd® of G’ will not suffice to obtain a lower bound dbg, |S'| larger tharn. The main reason
is that the maximum degre@’ of G’ is too large. But we have noticed that only rarely may one visit vertices' afith large
degree approaching this bound. Typically the degree of the vertices at hand will be fairly small. To utilize this observation,
we consider the maximum number of verticesSinreachable from a given verteX by « > 1 steps instead of a single step
(for a single step, this value is exactly the vertex out-degree). This corresponds to the study dfahsitive closure of5’
sometimes denoted d%')*. Namely, (G')* consists of the vertex s&, where two vertices are connected by an edge iff
there is a path of length at mostbetween them irG’. Clearly, if (G')* has diametetiam, then G’ has diameter at least
diam - «. Studying(G’)* instead ofG’ allows us toaverage outhe differences between the degree of vertice§&irand to
obtain the desired bound. In what follows we analyze the siz& ahd the valueDeg, of the maximum out-degree ifG’)*.

We then deduce a bound on the diameteGoof Ib > © (alogp,,, |S’\) which in turn implies the assertion of Theorem 5.
In what follows, for two functionsf and g, the notationf ~ ¢ will represent the fact thdbg f = ®(log g). We also assume
that A < n (otherwise there is a trivial lower and upper boundnf
C. The state spac§’
We start by bounding (from below) the total number of configurations in the state Spatehand.
|
S > nm + Am\ (nm)! ——
Am (mh"
We explain our bound: We first choose the: location for the empty entries of our data matrix. This determines the size
of the setsBy, ..., B, A, SAYymy,...,m, o Where eachn; is at mostm. We then decide on the content of each Bgetlf

the sets were ordered, the number of configurations would be exaetly!. As they are not ordered this number should be
divided by IT""(m;)!. It is not hard to verify thalI/""* (m;)! < (m!)" asy."""* m; = nm and eachn; is at mostm.

D. Deg,: number of vertices reachable in steps

We now bound (from above) the number of vertid@sg, that can be reached usingsteps from any given initial vertex
in S’. We taken > « > A. We defineD(«) to be the number of different configurations a certain set eblumns can take
in « steps.

n+A am Am ~ A+AmM

Deg, < < . ) <Am> (n+AM)*"D(a) ~n D(«)
We explain our bound: We first piak columns out of the: + A columns. There are now two types of changes that may have

been made in the data matrix, changes insideatttelumns we picked (referred to as internal columns) and changes outside

these columns (referred to as external columns). We start with external changes. The external empty spaces may have bee

filled with elements from the internal columns. This can be bounde@iiffy to choose the internal elements, afd+ A)A™

to distribute them among the external empty spaces (notice that there are ahmasich empty spaces). Now we are left

to consider the number of internal configurations one may obtain. We denote this valbéxbyNamely, D(«) equals the

number of possible configurations obtainable in a given set @dlumns when erasing these columns one after the other. It is

clear thatD(«) < a™*, Indeed, for a rough bound notice that internal entries must appear in one @fctlemns. Plugging

in this value of D(«) will already yield nice results. However, to tighten the results we comp\(te) recursively. Namely,

for « > B > A it holds that

&

o < [()(E)emon] = o

Again, we explain our bound. We would like to express the number of internal configuration obtainatdéeipsD («) by
the number of internal configurations obtainableSistepsD() for B smaller tharw. The analysis is similar to the previous
one forDeg,. We first compute how many configurations can be obtaine8l steps, and then raise this numberdyys. We
start by picking$ columns out of ther at hand. For the upcoming discussion, we refer todtltwlumns as external columns
and to theg columns as internal columns. Again, there may be two types of changes in the configuration, external and internal.
For external changes, we may fill some of the empty entries of the external columns with internal entries. This is counted for

by (g) (ﬁ’;ﬁ)am. As before, the internal changes are attributedig).



We now compute our lower bound. We have the freedom to fix the valuesaoid 8. For the first level of recursion, we
fix « = Alog, n and B = Alog, log, n = Alogf) n. It holds thatn > a > B. Thus, Deg, ~ n**4"D(a) is approximately

loga n
2
nA log, n+Am (A IOgA n)A]ng) n+AmD(A log(Az) I’l) 10g(A) n

For A < log, n it holds that

log(A2> n

TogaT ~
n'ega" ~ Alog,n

Thus we have thaDeg, ~
loga n

2) 2
TlA IOgA 11+A10gA nHZAmD(A 1Og(Az) 7’1) log(A ) n

For the second step of our recursion, we need to comp\te) = D(Alog(Az) n). We do this by fixinga' = Alog(Az) n and

B' = Alog?) n. For A < log® n it holds that

(3)
logp " 1
(2)

n 82~ Alog,’n

Thus we have thabDeg, ~

) logp 1
nZ?:l(AlogX) n+Am)D(A logf) n) log(A3> n

In general, we can continue the recursion as Iong&a:slogg) n, while for the base we takB(A) = A™A. So all in all we
get

logh n i 1 .
Deg, < nZi:]A (Alogx) n+Am)AmA% ~ plmlogyn, Alogyn

Finally, we evaluate our lower bound

. log, [S'| Amnlog, n n

b log, Degy ~ Amlogy n+ Alog, n - logyn/log,n+1/m

1)

Which implies a lower bound of
b = ©(n - min(m,log, n/logy n))

Almost matching our upper bound @ (n min(m,log, n)).

V. EFFICIENT CODING-BASED DATA MOVEMENT

We now focus our attention on data movement using coding, whetel. It is known that with coding2n — 1 erasures
are sufficient and necessary in the worst case. What about minimizing the number of erasures for each given instance, insteac
of just the worst case? (Certainly, for some instances, fewer2han1 erasures are needed.) Our coding-based solution will
use the concept of “canonical labelling.”

Definition 7. [10] Lety € [n — 2]. When we relabel the blocksB;, ..., B, asBj, ..., By, itis called a “canonical labelling with
parametey”if forany y +1 <i<n—2andi+2 < j < n, no data irB; need to be moved intB;.

The following observation has been made in [10]: “Given an instance of the data-movement problem with there
exists a coding-based solution using- y + 1 erasures if and only if there exists a canonical labelling with paramegtets
is NP hard to find a canonical labelling withminimized [10]. However, we should notice that whes= n — 2, any labelling
is a canonical labelling, and that would give us the-y +1 = 2n — 1 erasures, which is worst-case optimal.

We present a very efficient coding-based algorithm that uses + 1 erasures once a canonical labelling with paramgter
is given. In the algorithm, a very small Galois field is used for computati@f(§) with g > 3), and it generates parity-check
symbols with a small number of additions on average. Before this work, it was unknown how to find such strictly-optimal and
efficient solutions over small Galois fields [10]. Our algorithm achieves low coding complexity while minimizing the number
of erasures.
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Figurel. Example of the data-movement problem with= 14. We lety = 8. (a) The data-movement grajy. If the datad; needs to be moved to page
pj, there is an edge from vertéxto vertex;. (b) The symbol graplG;. The solid edges are thg#tack edgesand the dashed edges are thd edges

A. Coding-based Algorithm

The algorithm takes a canonical labelling with parameteas input. For simplicity, let us say that the original labelling
— By, By,...,B, — is the canonical labelling. (It is just a matter of naming.) It has been shown in Section Ill thatthe
pages ofBy,..., B, can be partitioned inton block-permutation sets. Our algorithm will work the same way for the
block-permutation sets. So for simplicity, in the following, we will consider only one block-permutation set, and call its pages
p1, P2, -- -, Pan. FOri € [n], p; is the page in bloclB; and originally holds the datd;. Fori € [n], the functiona(i) = j means
that the datai; need to be moved into the page. (Here;j € [n].) By the definition of block-permutation set, we know that
{a(1),...,a(n)} = {1,...,n}. If a(i) = j, we saya~'(j) = i. By the definition of canonical labelling with parameigrwe
know that fori € {y +1,y+2,...,n—2}, a71(i) <i+1.

We will use only one auxiliary block. We call #, and call its paggy. In our algorithm,By, ..., B, will be erased twice,
while By and Byi1,.--,Bn will be erased only once.

We define a functiorg(i) fori € {y +2,y+3,...,n}:

e fal(i—1)<y+1landa=l(i—1) # a(i), thenB(i) = a1(i —1).

e fy+2<al(i—1)<i—1,thenB(i) = B(a"t(i —1)).

e lfal(i—1)=i,orifa"'(i—1)<y+1anda"'(i—1) = «(i), thenB(i) = NULL.

We define the set;, for i € [y + 1], as follows:

ri={i1BG)=iy+2<j<n}

Example 8 An example is shown in Fidl (a). Heren = 14 andy = 8. Fori € [n], if a(i) = j (that is, the datd; need to be
moved into page;), we draw an edge from vertéxo vertexj. We call the graph thdata-movement grapG;.

Here we havex(1) = 9, a(2) = 4, ..., (14) = 8, anda~1(1) = 12, a7 1(2) = 13, ..., a"!(14) = 4. We also have
B(10) =1, B(11) = 8, B(12) = 8, B(13) =1, B(14) = 6. Correspondinglyy; = {10,13}, v¢ = {14}, vs = {11,12}. When
iely+1]andi #1,6,8,v;,=Q.

It is well known that a permutation consists of cycles.

Definition 9. A set of page®;, pi,, - - -, pi, , is called apermutation cyclef for j = 0,1,...,x — 1, a(i;) = ij4+1 mod x- Here
ij € [n] for all j. Among thex PageSPmax{i|o<j<x—1} is called thetail of the permutation cycle.

Example 10. The data-movement problem shown in Figia) has three permutation cycles: () po, pe, P13, P2, P4, P14, P8
P10, P12; (2) p3, s, p7; (3) p11. Their tails arep14, p; andp1;, respectively.

Let us build a directed grap@;, called thesymbol graphas follows.G; hasn vertices labelled by, . . ., n, which correspond
to then pagesp;, ..., pn. The edges ofG; have two colors: black and red. There is a black edge from vertexvertex
jif a(i) =j,j € [y+1] and p; is not the tail of its permutation cycle. There is a red edge from vertexvertex; if
y+2<i<n jely+1]andi€ v;.
Example 11 An example of the symbol grapB; is shown in Fig.1 (b). It corresponds to the data movement problem in FEig.
(a). The black edges @, always form disjoint paths. In this example, the paths are7 (1) 3 — 5; (2) 13 — 2 — 4, (3) 10;
412 — 1 —9 — 6, (5)14 — 8; (6) 11. We call themblack paths The “sources” of the above six black paths are vertices
7,13,10,12,14, 11, respectively, and their “sinks” are verticg4, 10, 6,8, 11, respectively.

It is easy to see that a black path can have at most one vertexfran®,y + 3,...,n},; and if it does, that vertex must be its
source. For a red edge, its beginning point must be the source of a black path. The end point of a red edge is either the end of ¢
black path or the vertex ' (y + 1).

We show that the symbol graphs has a simple structure. L€l; be the undirected version @;. That is, if we covert all
the edges of5; to be undirected edges, we g&t.



Lemma 12. Every connected component@f has at most one cycle.

Proof: Let us remove all the vertices @; that are not in any cycle, and call the remaining grajph Every cycle inGy

must have both black and red edges. Note that the black edges belong to the disjoint black paths, and the red edges have th
properties described in Example 11. betlenote the number of red edges@y. The beginning point of the red edges (if
we view them as directed edges) belongrtdifferent black paths. Since every vertex@j is in a cycle, and every beginning
point of a red edge (if we view it as a directed edge)Gpfis incident to exactly one red edge and one black edge, each of
thosex black paths must also contain exactly one end point of a red edge (if we view it as a directed edge). So every vertex
in Gy has degree two. SG consists of vertex-disjoint cycles. So all the cyclesGp are vertex-disjoint. If a path iiGs
connects two cycles, the path would start with a red edge; but that red edge would have to share the starting point of another
red edge — the latter edge is in a cycle — which would be impossible. So every connected comp@hehasfat most one
cycle. |

We define a functionw(j) for j € {y +2,y+3,...,n}. Given a cycleC in G, let us call its vertice$y, iy, . .., ix. Then for
je{iviy ..., ix}N{y+2,y+3,...,n}, letw(j) = —1if j = max{{i1,ip,...,ix} N{y+2,y+3,...,n}}, andw(j) =1
otherwise. For a vertexe {y +2,y+3,...,n} not in any cycle ofGs, let w(j) = 1.

We now present the coding-based algorithm. It uses y + 1 erasures to move data. For simplicity, we choose the
computation to be oveGF(3), whose elements arf0, 1, —1}. It is also feasible to us&F(g) with g > 3.

Algorithm 13 CODING-BASED DATA MOVEMENT
Step 1: Foi =1,2,...,y+1, do:
« If p; is not thetail of its permutation cycle, write the dafa— da = Lieq(i) w(j)d; into the page; 1, otherwise, write
the datal; — Yiey(i) w(j)d; into the page; 1
« Erase the blocB;.
Step2:Foi =y+1,y+2,...,n—1, write the dataifl(i) into the pagey;, then erase the blodk_ ;.
Step 3: Write the dataw(n) into the page,, then erase the blodk; .
Step 4: Foi =y,y —1,...,1, write the datal,, 1 (i) into the pagev;, then erase the blodk;_.

Example 14. Let the data movement problem be as shown in Eia), and we use Algorithri3 to move data. The data stored
in the pagey, . . ., p14 during the data movement process are shown inZiblote thatp,, ..., p, are erased twice each, while
Py+1,---,Pn @ndpg are erased once each. The total number of erasunes i+ 1.

pages Po P1 P2 P3 Pa Ps Pe p7 Ps P9y P10 P11 P12 P13 P14
data d da ds dy ds ds d7 ds dy [ do [ du [ dia [ diz | du
dy —dn dy—diy [ ds—d; [ di—dy [ ds—ds [ de—do | d7 ds — dus do—di | di | ds [ du | dwo | de dy
—dio —di13 +dis —dia —dn
di di3 d; d s do ds ds

Figure2. Example of the coding-based data movement algorithm.

B. Analysis

To prove that the algorithm is correct, the key is to prove that at any moment of the data-movement process, all the data can
be recovered by decoding the data currently stored in the pages. For that, it is helpful to observe the one-to-one correspondence
between the data written into the pages and the vertices/edges of the symboGgr&pery vertex € [n] of Gs corresponds
to the datad;, and the edges entering a vertéxorrespond to the data written intp; ; beforep; is erased(That is why
G is called thesymbol grapl) For example, let us look at vertex 1 in Fig. 1 (b). It has three incoming edges, respectively
from vertex 12, 10 and 13. Those incoming edges correspond to the syfhbal;, — dig — d13. From Fig. 2, we see that
was the symbol written intg, (beforep; is erased by the algorithm for the first time). The vertex 1 itself corresponds to the
symbold;, which was initially stored irp; and later written intopyg (which are also shown in Fig. 2). Algorithm 13 always
sequentially writes and erases symbol pairs sharing a common variabld;(fa.,somei), which correspond to a vertex and
its adjacent edge(s) iG;. This makes the stored symbols always linearly independent.

Theorem 15 When Algorithm13 is used to move data, at any moment, all the datd., . ..,d, can be recovered by decoding
the data currently stored in the paggspi, ..., pu-

Proof: We analyze the four steps of the algorithm, and use the symbol dgradbr explanation. Note the one-to-one
correspondence between the data written into the pages and the vertices/e@gewloich is shown above.
In step 1, every time a data symhbhlis erased (withl < i <y + 1), the symbol corresponding to the edges entering vertex
i of Gs; has been stored So for any symldr;lwith 1<j<y+1, there is a set of stored symbalg, d; —d;, — fo,d;, —
—fi,--,diy —di_| — fyo1, such thatd;, = a(d; ) for1 <k < x, d; = = d;, and fo, ..., fy-1 are linear functions of
dyi2,dyy3,...,dn. The symbolsi, o, d y+3,.. ,dy are all stored. Sd; can be decoded.



In step 2, consider a vertexof Gs; (with 1 < i < y+ 1) and the vertices iny; = {i1,i,...,ix}. Letip = i, and let
i1 < ip < --- < iy. Note that(iy, i), (i2,i0), .., (ix,ig) are the red edges that share the same end pgiimt G,. For
j=1,2,...,x, right before the symboili]. is erased (from pagpij), the symbolali].f1 has been stored (in page].,l). By the
way we set the linear functions of the stored symbols and the fact that every connected comparetiasfat most one
cycle, no subset of stored symbols can be linearly dependent. So all data can be recovered.

In steps 3 and 4, for any symba), either there is a set of stored symbajs d;, —d;, — fo,di, —di, — f1,...,di,_, —di, —
fr-1 with d; = oc(dikﬂ) for all k, or there is a set of stored symbalg, d;, — d;, — fo,di, —di; — f1,--.,di, —di_| — fx—1,
with d; = a(d;_,) for all k, such thatd;, = d; and fy, ..., f,_1 are linear functions ofl,.»,d,3,...,d,. By the way the
linear functions of the symbols are set and the fact that every connected compoiignad at most one cycle, we see that
d; can be decoded. Therefore, Algorithm 13 can successfully move datamsing+ 1 < 2n — 1 erasures. [ ]

VI. HARDNESS OFOPTIMIZING DATA MOVEMENT FOREACH INSTANCE

In the last section, we have presented a coding-based algorithm that moves data-usingl < 2n — 1 erasures, once a
canonical labelling 0By, ..., B, with parametery < n — 2 is given. On the other hand, there exists a data-movement solution
usingn +y + 1 erasures if and only if there exists a canonical labelling with paramet&o the presented algorithm is
strictly optimal. However, it is NP hard to find an optimal coding-based solution if the the canonical labelling with minimized
parametery is not given first [10]. A natural question is: What is the complexity of finding the best solution without coding
for each specific instance of the data-movement problem? (Again, this optimization is per-instance instead of for the worst
case.) We study this topic in this section.

We will prove the NP hardness of non-coding solutions for a slightly generalized version of the data-movement problem.
Let's allow some original data to be just erased, instead of moved. More specifically, we change the funidion :
{1,...,n} x{1,...,m} — {1,...,n}U{L}, wherea(i,j) = L means that the datd; just need to be erased, instead of
moved. This is a very practical generalization, because in flash memories, there are usually pages whose data are no longe
useful, and such pages are labelled as “invalid” in flash memories to be erased later [5]. Let us call this vegsoprtidzed
data-movement problem

Fori,j € [n], letd(i — j) denote the number of pages of data that need to move from #ptk block B;. That is,

d(i —j) = |{k | k € [m],a(i, k) = j}|. We now define a concept called theovement grapit,,.

Definition 16. (MOVEMENT GRAPH) Corresponding to a generalized data-movement problem, we build a directedigyaph
(V,E) as follows. We lelVV = {v1,vy,- -, vy}, Wherev; represents the blodg; fori € [n]. For anyi,j € [n] andi # j, there
ared(i — j) directed edges from vertex tov;. This graphG,, = (V, E) is called the fnovement graph

Definition 17. (PERMUTED LABELLING, ASCENDING EDGESAND DESCENDING EDGE$ Let 7t be a permutation dfl,2,--- ,n}.
That is,rt(i) € [n] for anyi € [n], andr (i) # 7t(j) for anyi # j € [n]. LetII denote the set of all the! such permutations. Let
7~1 be the inverse function of.

Given a permutatiom, in the movement grapG,, = (V, E), we call an edge from,; tov; an “ascending eddef (i) <
=1(j); we call it a “descending eddéf w—1(i) > w~1(j). Let A denote the set of ascending edges Brddenote the set of
descending edges, given the permutatioNote thatt = A, U D. The permutatiom is also called a fermuted labellingof
the graphG,,.

We first present a (tight) lower bound for the number of erasures. The concepargdriical data-movement solutionsed
in the following proof will also be used later for proving NP hardness and approximation results.

Theorem 18 For data-movement solutions without coding, the number of erasures needed for moving data is at least

n I_minrceH |Arl ';Zie[n] d(i — 1)-|

n
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And whenA > | 1, this bound is tight.

Proof: Let k denote a non-negative integer, and fedenote a permutation dfl,2,---,n}. We call a data-movement

solution “canonical if — for some k and 7t — it consists of the following three steps:

e Stepl: Fori=n+1,n+2,---,n+k, write data into the auxiliary blociB;.

« Step 2: Fori = 7r(1),(2),---,7(n), eraseB; and then write data int®;.

e Step3: Fori=n+1,n+2,--- ,n+k, erase the auxiliary bloch;.

Let P denote the generalized data movement problem.RRetdenote the same data movement problem except that we
change the number of auxiliary blocks fromto co. Clearly, the number of erasures needed for problers no less than
that for problemP,. The idea of the proof is as follows:

« First, we show that for any solution to problefhthat usest erasures, there is a correspondirgrionical solution to
problem P, that also uses erasures;
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« Next, we show that everycanonical solution to problemP. uses at least + | o

Let us now prove the first step.

Let s denote a solution to problerR that usesx erasures. Foi = 1,2,--- ,n+ A, let y; denote the number of times that
block B; is erased in solution. (Clearly, x = Z;?;A yi.) We construct a ¢anonical solution to problemPs, that usesx
erasures in the following way:

o« Letz =mn.

e FOri=n+1n+2,---,n+Aandj=1,2,---,y; do: Increase by one, then write into the auxiliary blocR, the

data that were written int®; in the solutions between its(j — 1)-th erasure and itg-th erasure.

e FOri=1,2,--- ,nandj=1,2,--- ,y; — 1, do: Increase by one, then write into the auxiliary blocR, the data that

were written intoB; in the solutions between its-th erasure and itéi + 1)-th erasure.

« Let 7t be such a permutation dfl,2,--- ,n}: in the solutions, V1 < i < j < n, the bIocan(i) was erased for the last

time (i.e., for itsy,(;-th time) before the blockB,;(;) was erased for the last time (i.e., for itg;-th time).

o Fori=m(1),7(2),---,m(n), erase blockB;, then write intoB; the data that were written intB; in the solutions after

its y;-th erasure.

e FOri=n+1,n+2,---,z, erase the auxiliang;.

The above solution is indeed a feasible solution to probmbecause of its correspondence to the solutiowhat differs
the new solution from the solutios is that instead of erasing data from a block, the new solution keeps the data in some
auxiliary block. (And that makes the new solution feasible since no less data is preserved during the data movement process.)
The new solution is acanonical solution, where the integer parameter= Z?jnAH vi+Xl,(yi—1) = x—n and the
permutation parameter is as specified above. The new solution ukessn = x erasures. So the first step in our proof is
shown to be correct.

Let us now prove the second step.

A “ canonical solution to problenP, first writes data into auxiliary blocks, then erases the bldgks, B 2), - - - , Br(n)
sequentially based on some permutatior{and writes data into them after the erasures), and finally erases all the auxiliary
blocks. Letrr—! denote the inverse function of. What kind of data needs to be written into the auxiliary blocks? For the
data originally in the page;; (wherei € [n] andj € [m]), namelyd, ;, we have

o If m 1 (a(i,j)) > (i), then d;; needs to be written into the auxiliary blocks, because otherwise, Bhés erased,

the datad; ; would be lost. (Note that; ; needs to be moved intBa(l-,”, and in the solutionB; is erased befor@a(i,]-) )
o If ml(a(i,j)) = 7 1(i) (ie.,a(i,j) = i), thend; ; needs to be written into the auxiliary blocks, because otherwise, when
B; is erased, the data would be lost.
o If T (a(i,j)) < (i), then d;; does not need to be written into the auxiliary blocks, because vBhes erased, it
has already been moved inBy,; ;).
o If T Na(i,j)) = ¢, thend, ; does not need to be written into the auxiliary blocks, because the data just need to be erased.

In the above four cases, there dré,| pages of data in the first case because every such page of data corresponds to an
ascending edgen the movement graplwhose permuted labelling is. There are)_;,; d(i — i) pages of data in the second

. . i An icln d(i—i - . .
case. So the canonical solution needs at |6 ey 20 21 auxiliary blocks to store the data in the first and second

mo
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| erasures.

cases. So the solution needs at least o erasures. So the second step of the proof is also shown to
mingepy |Ar|+Tie(n) 4(i—1)

be correct. On the other side, whan> | o 1, the solution described above is also feasible, so the lower
bound becomes tight. ™

Theorem 19 For the generalized data-movement problem, it is NP hard to find per-instance optimal solutions without coding.

Proof: It is sufficient to prove that the problem is NP hard wh&n> nm. When A > nm, an optimal solution
can be transformed into a canonical optimal solution in polynomial time. Also, if a canonical optimal solution is known, a

permuted labelling(i.e., permutationyr for the movement graph that minimizes the vall A"HZ"E[”]d(H')l can be found

in polynomial time, and vice versa. (Both are shown in the proof of Theorem 18.F ket((Y;c(, d(i — 7)) mod m). We

see thal < F < m —1 andF is fixed given the instance of the problem. The above observations show that it is sufficient to
prove that it is NP hard to find a permutatianthat minimizes[%}.

Let 7ty be a permutation such thafi;,| = min,cy|Ax|. Let 7* be a permutation such that -

A% |+F |Amg|+F
(SO |An:| > |Ar,|, but [AzltE] — 112m]
o CLAIM ONE: It is APX-hard to findrr.

e CLAIM TWO: It is NP hard to findrr*.

First, we provecLAIM ONE using a reduction from the APX-hardinimum feedback arc set proble@iven a permutation
7t, we can easily find thascending edgesl;. Since every cycle in the movement gragh, = (V,E) must contain an
ascending edged ; is also afeedback arc sedf G. (A feedback arc set of a direct graph is a subset of edges such that every

— [minnd;"AnHF] ]

1.) We will prove two claims:



cycle contains at least one edge from the subset.) On the other side, given a feedbacls arcEset G, we can easily find a
topological ordering of the vertices of the directed acyclic grégh= (V, E — S) such that all the edges &5 are descending
edges. (Note that a topological ordering is also a permutation of the vertices.) So if wesusedenote this topological
ordering, thenA,, C S. So it is not difficult to see that a minimum feedback arc set is also a minimum set of ascending
edges, and vice versa. (Also note that every directed graph can be the movement graph of a data movement problem.) Sc
finding 77y is equivalent to the minimum feedback arc set problem, which is APX haretL8ov ONE is true.

We now proveCcLAIM TWO by contradiction. Suppose that there is a polynomial-time algorithm tosfindVe have shown
that finding 7y is APX-hard, which means that there exists a constant 1 such that no polynomial-time algorithm can
guarantee to find a permutation with the property|A;| < c|Ar,|, assumingP # NP. Let G, = (V;, E) be a graph that
consists ofz copies of the data movement gragh= (V, E), wherez = [ " |. Clearly, G, is also the data movement graph

(A
of a data movement problem, and its optimal data movement squUonzusei «( ”OHDG[”] diz >>1 erasures. (W.l.o.g., we
can assume that,,| > 1.) We can use the polynomial-time algorithm to find an optlmal solutiorGipthat applies the same

L o 4L =
permutationrt’ to thez subgraphs of5;, which useszn + [ Ay HE;; i )] erasures. San + | (lA’OHEmE d(i l))] =

zn [ AT, S0 [T = (M. S02(| A +F) < 2(|Am |+ F) + (m—1). SO|Ar| < |Ar| +
= |Ax| + m <NAgy| +(c—=1) < |Ar|(1+ ‘ i~ ) < |Ag|(1+c—1) =c|Ag|. That contradicts the fact that
no polynomial-time algorithm can guarantee to find a permutationith the property|A,| < c|Ax,|, assumingP # NP.
So it is NP hard to findt*. SocLAIM TwO is true, and the theorem is proved. [ ]

Let us now study approximation algorithms for the data movement problem, for the case Avberem. In this case,
canonical solutions exist; and to minimize the number of erasures, we just need to find a permuted labidlingrinimizes
the number of ascending edges. As shown in the proof of Theorem 19, this is the same as finding the minimum feedback arc
set. There are known approximation algorithms for the latter problem [3]. We now present the corresponding approximation
algorithm for the data movement problem.

Algorithm 20 . (Canonical data-movement algorithm without coding)
Let G, = (V,E) be the movement graph. L&tbe a known approximation algorithm for the minimum feedback arc set
problem.
1) Use the algorithnf to find a feedback arc s6tof the movement grapB,,,.
2) Find a topological ordering of the acyclic directed grapis = (V,E — S), such that all the edges 6fs; are descending
edges. (Note that a topological ordering is also a permutation of the vertices.)

3) Let be the permuted ordering fak,. LetS’ C S be the set of ascending edgesif Letz = o

4) Write into the auxiliary blocksB, 1, B,+2,- -+, Buyz the data that either correspond to the “ascending edges” or are
required by this problem to stay in their original blocks.

5) Fori = n(1),7(2),---,m(n), erase blockB;, then write into it the data that are required to be moved into it by this
problem.

6) Erase the auxiliary blockB,, .1, B,+2,- -+, Bntz.

|S" |+ Eie ) d(i—i)
ey,

The following result analyzes the approximation ratio of Algorithm 24.
Theorem 21 Let c denote the approximation ratio of the known algoritlinfor the size of the feedback arc set. Then the
approximation ratio of Algorithn24 for the number of erasures is at most
3c 1 3c
- _|_ ]
2c+1 n  2c+1
Proof: Let S* be the minimum feedback arc set of the movement gi@ph Then the algorithnF finds*a feedback arc
setS of size |S| < ¢|S*|. The optimal solution without coding to the data movement problem uses{w]

m
S ictm d(i—i —Y e d(i—i Lo L .
W] %’M because it is trivial to obtain a

< min{g,c}.

erasures. Algorithm 24 uses+ [ erasures. We havis| <

2|n fact, sinceS’ C S is also a feedback arc set, a carefully designed algorhwill have S’ = S.



feedback arc set i that consists of half of its edges. So the approximation ratio of Algorithm 24 is
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VIl. CONCLUSIONS

In this paper, we present both coding and non-coding based algorithms for efficient data movement in flash memories. By
proving a lower bound for the number of erasures used by algorithms without coding, we rigorously show the advantage of
coding. The hardness and the approximation of per-instance optimization are also studied.

APPENDIX

We describe here an algorithm for the non-coding data movement problem that is efficient and has a straightforward
implementation. The model we use is slightly different from the one in previous sections, but only for the sake of a clear
description. More specifically, we model the data bymarx n matrix. Each entry is labeled with a number frdmo n — 1,
specifying the destination block. For each lahethere are exactly: entries labeled with. In the construction below we use
n=m = 2P andA = 2. It is not hard to verify that the construction extends to gene@arahd arbitrarym > n (by changing
the underlying alphabet used in the construction from 2 tsymbols).

A. Decomposition by Hall’s Theorem

We can apply the well known Hall's theorem from combinatorics to decompose the matrix BetsSy, ..., S, _1, such
that each set contains all the numbers froo n — 1 exactly once, and also each set contains exactly one number from each
column. For completeness, we include Hall's theorem below [2]:

Theorem 22 [Hall] There exists a system of distinct representatives for a family eéts iff the union of ank of these sets
contains at least elements for alk from1 ton.

In our case a set is a column, and the family of sets is the entire matrix. It is easy to verify that the uniork abanyns,
for all k from 1 to n contains at least different numbers. Therefore the theorem applies, and the decomposition can be found
in O(n®logn), or O(mn?logn) in general [1], while this does not involve any erasure.

B. Data Movement by Twice Transpose

The data movement problem can be solved by two applications of an algorithm that realizes the transpose of the matrix.
First, we decompose the matrix by Hall’s theorem, to obtain the &gts ., S, 1 as described before. With erasures, by
changing the position of pages within each column, eacl$sean be moved to occupy theh row of the matrix. After the
first transpose, each s&t will ocuppy thei-th column. Withn more erasures, again rearrangements within each column, every
setS; can be ordered from to n — 1. Finally, the second transpose gives the desired configuration. We show an example for
a4 x 4 matrix.

Example 23 The Hall decomposition is shown by using card suits, indexed by the original number of the entry. Notice that each
suit has all the indexes from 0 to 3. Then we rearrange each column such that at the end every suit appears in one line. After the
first transpose, every suit appears in one column. After another vertical rearrangement of each column followed by a transpose,
we reach the final state where all indexdéelong to column, fori € {0,...,n —1}.

Hall decomposition First transpose Second transpose
3210 L XX X TR LI ) #; Or $1 o ®o Qo $o o MO MM
1332 [01 D303 | | 92030001 | | 4003028 [ | #4101 01 || Q9010203
2001 O2 0 Oy O G102 030 #; Oy O3 8 ) Oy Oo &0 O 0102 O3
0213 & O2 o1 3 doo 2 &1 & [ YASROIE X! #; O3 O3 83 doo 1 &2 &s



The basic step of the algorithm is an exchange of entries between two columns. Therefore, the vertical position of pages in
a column is not important at the beginning of the algorithm, and we can exclude d¢nasures that were mentioned before
each transpose.

C. Bit-Fixing Algorithm for Transpose

We now describe the algorithm that realizes the transpose of a square matrix-wipl columns. It is shown as Algorithm 24
below. The guiding principle of the algorithm is to use the binary representation of the column indexes (and of the matrix
entries), and move the data between columns such that corresponding bits of the entries are in agreement with those of
the columns, therefore by “fixing the bits”. The outer loop hasteps, corresponding to each of thebits in the binary
representation. They can be fixed in any order, but for the sake of a definition we chose the one from least to most significant.
For each bit that is fixed, we make/2 = 2P~! pairs of columns. The condition is that for each pair, the binary representation
of their indexes has to agree on the bits that have already been fixed. Again, for the simplicity of defining the algorithm, we
choose the pairs such that the binary representations of their indexes agree on all the bits, except the one being fixed in the
current round. A pair is defined by the columBg and B, in the algorithm. For any such pair, we rearrange their entries such
that they agree with the column index on the bihat is currently being fixed. The correctness of the algorithm is shown by
the following theorem.

Algorithm 24 . BIT-FIXING ALGORITHM FOR TRANSPOSE
0 0 e 0

1 1 e 1
INPUT: Square matrixA = . . ) , Wheren is a power of 2n = 2F.

n-1 n-1 --- n-1
OuUTPUT: The transpose oA.
ALGORITHM: Fori = 0top — 1, and fork = 0 to2P~! — 1, do:

1) Let(by_>...b1bg) be the binary representationiaf

2) Let By be the column with binary indepb, > ...b;0b;_1 ...b1by).

3) Let B, be the column with binary indepb, > ...b;1b;_1...b1by).

4) BetweenBy andBy, move entries whoseth bit is0 to By and those whoseth bit is1 to B;.

Theorem 25 TheBIT-FIXING TRANSPOSEAIgorithm is correct, namely it realizes the transpose of the input matrix. The number
of block erasures iglog n, using only two extra blocks of memory.

Proof: We give a proof by induction over the number of bits that are fixed. We want to prove the following property:

“after fixing k bits, k € {1,...,(logn) — 1}, each column contains exactyf % numbers, each one of them appearitfg
times.”

Basis case: it is easy to verify that the property is truekfet 1. After fixing the first bit, any odd column will contain all
the odd numbers, each appearing twice, and the same is true for even columns and numbers.

Suppose the property is true for any number of bits up, foe {1,... (logn) —1}. We prove that after fixing thé + 1)-th
bit the property is still preserved. Consider an assignrilgnt; . . . by) of the firstk bits. There ar@”—* numbers whose binary
representation agrees with the assignm@gt, ... bp), and from the induction hypothesis it follows that any column whose
index agrees wittiby_; ... by) must contain all thes2”—* numbers. Therefore the set of columns that agree @ith; . . . by)
has cardinality2?—*, and any such column contains all the possible numbers than can agreg@with. . by), for a total of
2P~k numbers, each appeari§ times in any of the columns. The algorithm exchanges data between columns that agree on
the firstk bits, and do not agree on th& + 1)-th. Therefore, for each pain/2 of the numbers in a column agree with the
(k + 1)-th bit of the column index, and /2 do not. Therefore, after fixing thék + 1)-th bit the property is still preserved.

After fixing the last bit, every column will contain just one number, that is equal to the column index, thereby realizing the
transpose.

To count the number of erasures, there largn steps in the outer loop. Each inner loop can be done Witherasures,
assuming two extra columns because each pair of columns can exchange their ddteragthres by simply copying them to
the extra columns and back in the desired order. In fact, by rotating the extra space, namely by copying the pair to the extra
space in the order dictated by fixing the bit and using the space of the pair as the new empty space, the inner loop can be
realized byn erasures. Therefore, the algorithm makdsgn when rotating the empty space. [ ]

Example 26. We show the execution of thBIT-FIXING TRANSPOSEAIgorithm forn = 8. The top row is the binary column
index, and the bottom row indicates the pairs of column$ € {1,...,n/2}, used to move the data.
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