
Data Movement in Flash Memories
Anxiao (Andrew) Jiang

Computer Science Department
Texas A&M University

College Station, TX 77843
ajiang@cse.tamu.edu

Michael Langberg
Computer Science Division
Open University of Israel

Raanana 43107, Israel
mikel@openu.ac.il

Robert Mateescu
Electrical Engineering Dept.

Caltech
Pasadena, CA 91125

mateescu@paradise.caltech.edu

Jehoshua Bruck
EE & CNS Dept.

Caltech
Pasadena, CA 91125

bruck@caltech.edu
Abstract

NAND flash memories are the most widely used non-volatile memories, and data movement is common in flash storage
systems. We study data movement solutions that minimize the number of block erasures, which are very important for the
efficiency and longevity of flash memories. To move data amongn blocks with the help of∆ auxiliary blocks, where every block
containsm pages, we present algorithms that useΘ(n ·min{m, log∆ n}) erasures without the tool of coding. We prove this is
almost the best possible for non-coding solutions by presenting a nearly matching lower bound. Optimal data movement can be
achieved using coding, where onlyΘ(n) erasures are needed. We present a coding-based algorithm, which has very low coding
complexity, for optimal data movement. We further show the NP hardness of both coding-based and non-coding schemes when
the objective is to optimize data movement on aper instancebasis.

I. I NTRODUCTION

NAND flash memories are the most widely used non-volatile memories due to their high data density and efficiency. In a
NAND flash memory, cells are organized as blocks. A block has about105 cells, and a cell can store one or more bits. Every
block is partitioned into pages, where a page is the unit of a read or write operation. A prominent property of flash memories
is block erasure. It means to change any stored data, the whole block must be erased first before rewriting. Block erasures
significantly decrease the longevity and the speed of flash memories, so it is very important to reduce them [5].

Flash memories often store a large amount of data, and data movement is very useful for reassembling files, wear leveling,
and in-place computation. We consider the basic form where the data in different pages need to be switched. This problem
was first studied in [10], where coding-based data movement is shown to minimize the number of erasures. In this paper, we
significantly extend the known results by rigorously proving the gain of coding, presenting efficient data movement algorithms,
and showing the NP hardness of per-instance optimization.

In the data movement problem, there aren blocks, where each block hasm pages of data. Themn pages of data need
to be moved into each other’s positions as required.∆ empty auxiliary blocks can be used to help data movement. The
objective is to minimize the number of block erasures in the data movement process. We present efficient algorithms that use
Θ(n ·min{m, log∆ n}) erasures without the tool of coding. We prove it is nearly the best possible by proving a close lower
bound. Since coding-based solutions requireΘ(n) erasures, this result rigorously proves the benefit of coding.

We present a strictly optimal coding-based algorithm for∆ = 1 with at most2n − 1 erasures. It has very low coding
complexity. We further show that if the objective is to optimize data movement on a per instance basis, the problem is NP hard
for both coding and non-coding schemes. Nevertheless, the coding technique in the above algorithm can be readily utilized in
any per-instance-optimal solution.

A number of recent works have studied coding for rewriting [4], [6], [7], [9], [12] and error correction [8], [11] in flash
memories at the cell level. There are also many works studying algorithms and data structures for flash data-storage systems [5].
This paper focuses on coding for data movement at the page level, and the results can be used to design more efficient flash
storage systems.

The rest of the paper is organized as follows. Section II defines the data movement problem. Section III presents data
movement algorithms without coding. Section IV derives a lower bound for data movement without coding. Section V presents
an efficient coding scheme for optimal data movement. Section VI studies the complexity and approximation of per-instance
optimization. Section VII presents the conclusions.

II. N OTATIONS AND CONCEPTS

There aren blocks containing data, denoted byB1, . . . , Bn. Every block consists ofm pages. Fori = 1, . . . , n, the pages
in Bi are calledpi,1, . . . , pi,m. For 1 6 i 6 n and 1 6 j 6 m, the data originally stored inpi,j is denoted bydi,j. There is a
function α:

α : {1, . . . , n} × {1, . . . , m} → {1, . . . , n}
such that∀ 1 6 i 6 n, |{(a, b)|1 6 a 6 n, 1 6 b 6 m, α(a, b) = i}| = m. Our objective is to move (i.e., write) the datadi,j
into a page in blockBα(i,j), for 1 6 i 6 n and1 6 j 6 m. There are∆ empty extra blocks, calledauxiliary blocks, that we can
use to help move data. (Every auxiliary block also hasm pages.) For reliability, it is required that during the data-movement
process, the data in thesen + ∆ blocks must always be sufficient for recovering all the original data. In the end, the auxiliary
blocks should return to the empty state. We measure the cost of data movement by the total number of block erasures. (Note

that changing any data in a block requires erasing the block first.) The solution that minimizes the number of erasures is called
optimal.

There exist two types of solutions, namely, solutions with and without coding. In a solution without coding, data are simply
copied from page to page. In a coding-based solution, the data written into a page can be any function of the existing data.

Example 1. We show an example without coding wherem = 3, n = 4 and ∆ = 2. Each page is indexed by its label (the
destination block), and its content (the card suit). For example the pages indexed by1♥, 1♠ and1♦ should be moved to the first
block. In the first step, the content of the first block is copied to the auxiliary memory, and the first block is then erased. In the
second step, the pages labeled with 1 are copied into the first block. In the third step, before erasing block 2, we copy only3♦ and
4♦ to the auxiliary memory, because1♥ already appears in block 1. After several steps, we realize the desired data movement.

2♥ 1♥ 3♠ 2♦
1♠ 3♦ 4♥ 1♦
4♠ 4♦ 2♠ 3♥

→
1♥ 3♠ 2♦ 2♥ 4♠
3♦ 4♥ 1♦ 1♠
4♦ 2♠ 3♥

→
1♥ 1♥ 3♠ 2♦ 2♥ 4♠
1♠ 3♦ 4♥ 1♦ 1♠
1♦ 4♦ 2♠ 3♥

→
1♥ 3♠ 2♦ 2♥ 4♠
1♠ 4♥ 1♦ 3♦ 1♠
1♦ 2♠ 3♥ 4♦

→ · · · →
1♥ 2♥ 3♥ 4♥
1♠ 2♠ 3♠ 4♠
1♦ 2♦ 3♦ 4♦

It is known that coding-based solutions can optimize data movement [10], which use at most2n − 1 erasures. We now
rigorously prove the gain of coding, and show efficient data-movement algorithms.

III. D ATA MOVEMENT WITHOUT CODING

In this section, we present two algorithms for data movement without coding. They usendlog∆ ne+ 3n
2 and 5nm

2 erasures,
respectively. This shows that without coding,Θ(n · min{m, log∆ n}) erasures are sufficient for data movement. Here we
assume∆ > 2, because when∆ = 1 there are cases that cannot be solved without using coding [10].

A. Block-merging Algorithm

Given a positive integeri, let [i] denote{1, 2, . . . , i}. Call the∆ auxiliary blocksBn+1, . . . , Bn+∆. For n + 1 6 i 6 n + ∆,
denote them pages inBi by pi,1, . . . , pi,m. In the data movement process, data are copied from page to page. At any given
moment, if a pagepi1,j1 stores the datadi2,j2 , the we useφi1,j1 to denoteα(i2, j2). That is, the data in pagepi1,j1 need to be
moved into blockBφi1,j1

in the end.

Definition 2. Let S ⊆ [n + ∆]. The blocks{Bi|i ∈ S} are called “semi-sorted” if there exists a bijection functionπ : S → S (that
is, a permutation of the elements inS) such that∀ i1 6= i2 ∈ S andj1, j2 ∈ [m], if π(i1) < π(i2), thenφi1,j1 6 φi2,j2 .

Let’s use the help of semi-sorted blocks to move data. For simplicity, in the following we assumen is a power of∆, namely,
n = ∆z for some integerz. We will extend the results for generaln later. As the beginning step, we partition[n] into n/∆
subsetsS1, · · · , Sn/∆, where|Si| = ∆ for 1 6 i 6 n/∆. We createn/∆ sets of semi-sorted blocks as follows. We first copy
the data in{Bi|i ∈ S1} into the ∆ auxiliary blocks{Bi|n + 1 6 i 6 n + ∆} such that the blocks{Bi|n + 1 6 i 6 n + ∆}
become semi-sorted blocks. Then fori = 2, . . . , n/∆, we erase the blocks{Bj|j ∈ Si−1}, and copy the data in{Bj|j ∈ Si}
into {Bj|j ∈ Si−1} such that the blocks{Bj|j ∈ Si−1} become semi-sorted. Finally we erase the blocks{Bi|i ∈ Sn/∆}. This
way, we have createdn/∆ sets of semi-sorted blocks usingn erasures.

Clearly, our final objective is to make{B1, · · · , Bn} one big set of semi-sorted blocks. How can we combine then/∆
smaller sets of semi-sorted blocks we already have to achieve this objective? Let’s useT1, . . . , Tn/∆ to denote ourn/∆ sets
of semi-sorted blocks, and useT0 to denote the set of∆ empty blocks. We first show how to combineT1, · · · , T∆ into one
bigger set of semi-sorted blocks. We copy data fromT1, . . . , T∆ into the empty blocks (one empty block at a time) with the
following rule: “for two pagespi1,j1 and pi2,j2 of T1, . . . , T∆, if φi1,j1 < φi2,j2 , then the data in pagepi1,j1 is copied before the
data inpi2,j2 .” (Note that for everyTi (1 6 i 6 ∆), the data in it are already sorted, so they just need to be copied sequentially
block after block.) For a block inTi (1 6 i 6 ∆), once its data are all copied, we erase it so that it becomes empty and can
have data moved into it later. Can we keep moving data this way so that in the end, the data inT1, · · · , T∆ are moved into
∆2 blocks, which are semi-sorted? The answer is yes, because in the above procedure there is always place to move data into:
Every time we have completely filled a number of empty blocks, if we look at the blocks inT1, . . . , T∆ whose data have been
partially copied, their un-copied data together can fill at most∆ − 1 empty blocks. Since we have∆ empty blocks to begin
with, there is always an empty block to copy data into.

Using the same method, we can combine then/∆ sets of semi-sorted blocks inton/∆2 bigger sets of semi-sorted blocks.
By repeatedly using this approachlog∆ n times, we can getn blocks that are semi-sorted. All left to do is to move the data
into their final positions, which takes at most3n/2 erasures. In total, this algorithm uses at mostn log∆ n + 3n

2 erasures. For
general values ofn, this algorithm uses at mostndlog∆ ne+ 3n

2 erasures.

B. Algorithm based on Block-permutation Sets

We now present an algorithm that usesO(nm) erasures.

Definition 3. A set ofn pagesp1,j1 , p2,j2 , . . . , pn,jn is a “block-permutation set” if{α(1, j1), α(2, j2), . . . , α(n, jn)} = [n].

It is known that thenm pages inB1, . . . , Bn can be partitioned into exactlym block-permutation sets [10]. Without loss of
generality (w.l.o.g.), let’s assume that fori = 1, . . . , m, the n pagesp1,i, p2,i, . . . , pn,i form a block-permutation set. (Since a
block contributes exactly one page to every block-permutation set, this is just a matter of labelling.) By definition, the data of
the n pages in a block-permutation set need to be permuted in then blocks B1, . . . , Bn. In the following, we use this property
to move data, using only two auxiliary blocks (which we will callBn+1 and Bn+2).

Consider a block-permutation setp1,j, p2,j . . . , pn,j. Since a permutation consists of “permutation cycles”, let’s consider such
a cycle of lengthz 6 n: pi0,j, pi1,j, . . . , piz−1,j. That is, fork = 0, 1, . . . , z− 1, α(ik, j) = i(k+1) mod z. With the two auxiliary
blocks, we can move the data inside the cycle to their right places without moving any data outside the cycle. The basic idea
is that with one auxiliary block, we can cyclically shift the data inside the cycle. With the other auxiliary block, we can use
it to temporarily hold the data outside the cycle when the corresponding block is erased. Specifically, we can move the data
of the cycle to their right places this way:

1) Copy the datadiz−1,j from piz−1,j to pn+1,j.
For j′ ∈ [m] \ {j}, copy the datadiz−1,j′ from piz−1,j′ to pn+2,j′ .
EraseBiz−1 .

2) For k = z− 2, z− 3, . . . , 0, do:
a) Copy the datadik ,j from pik ,j to pik+1,j.
b) For j′ ∈ [m] \ {j}, copy the datadik+1,j′ from pn+2,j′ to pik+1,j′ .
c) EraseBn+2.
d) For j′ ∈ [m] \ {j}, copy the datadik ,j from pik ,j to pn+2,j′ .
e) EraseBik ;

3) Copy the datadiz−1,j from pn+1,j to di0,j.
For j′ ∈ [m] \ {j}, copy the datadi0,j′ from pn+2,j′ to pi0,j′ .
EraseBn+1 and Bn+2.

With the outlined procedure, we can movez pages of data in a cycle using2z + 1 erasures. In the same way, we can move
the n pages of data in a block-permutation set using at most5n/2 erasures. Furthermore, we can move all thenm pages using
5nm/2 erasures.

We have designed another efficient data-movement algorithm, called thebit-fixing algorithm, that allows straightforward
implementation in flash memories. We present it in the appendix. All in all, we conclude:

Theorem 4. Let ∆ > 2. When coding is not used, the data movement problem can be solved using at most

min{ndlog∆ ne+
3n
2

,
5nm

2
} = Θ(n ·min{m, log∆ n})

erasures.

IV. A L OWER BOUND

In this section, we prove that without coding, a data-movement algorithm needsΩ(n ·min{m, (log∆ n)/(log∗∆ n)}) era-
sures.1 Sincelog∗∆ n is practically a very small number, this lower bound is very close to the upper bound shown in Theorem 4.

A. Model

In this section, to simplify our notation, we use an equivalent model defined as follows: Our data is modeled as anm× (n + ∆)
matrix A = (ai,j)m×(n+∆). Initially, the data in the sub matrix consisting of the firstn columns contains all the elements in the
set [mn]; and the remaining (auxiliary) entries are empty. Namely, each of themn entries in the firstn columns have distinct
values, and allx ∈ [mn] appear in these columns. The valuex of ai,j indicates that the data in pagepi,j needs to be moved to
location i′, j′ wherex = (i′ − 1) + (j′ − 1) ∗m (namely,i′ − 1 = (x mod m) and j′ − 1 = bx/mc). In other words, after the
data movement, the final matrixA∗ will include the elements of[mn] in the firstn columns inincreasingorder; the remaining
∆ columns will be empty. We useBi to denote theset of valuesthat appear in thei-th column ofA (Bi ⊂ [mn]). We assume
throughout that∆ 6 n (otherwise the problems studied throughout this work become trivial).

In general, our objective is to perform operations to the initial matrixA, such that the data in each page is moved to
its corresponding location. We allow two types of operations: (a)Copyingdata from a current page to an empty page. This
corresponds to writing the value of an entryaij into a location that was previously empty. Copying data is thought of as a

1Here log∗∆ n is the iterated logrithmof n, which is defined as the number of times the logrithm function must be iteratively applied before the result is
less than or equal to 1. Namely,log∗∆ n = 1 + log∗∆(log∆ n) for n > ∆. Notice thatlog∗∆ n grows very slowly withn.

costless operation. (b)Erasinga column of data. This corresponds to erasing the value of all entries in a given column. After
the operation, all entries in the given column will be empty. Erasing data is thought of as a costly operation. Given an initial
matrix, using the two operations above, our objective is to reach thefinal matrix A∗ specified above. In this section, we present
lower bounds on the number of erasures needed to reach this goal.

B. Proof outline

To prove our lower bounds, we consider the directedconfigurationgraphG = (S, E) of our process. The vertex setS of our
graph will include all possible matricesA that can be reached by performing operations (a) and (b) above on the initial matrix
A. To be precise, to allow a clean analysis, we will restrict ourselves to the set of matricesA′, reachable fromA, that have
exactly ∆m empty entries; and that the remainingmn entries include the set[mn] (one entry per element). It is not hard to
verify that this is without loss of generality. On one hand for everyx ∈ [mn] our intermediate matrixA′ must include an entry
of value x, otherwise we will not be able to reach the final matrixA∗. On the other, we may assume that there are exactly
∆m empty entries as any valuex ∈ [mn] that appears in two positions is redundant. We define a slightly different operation
on our matrix that preserves the above restrictions and combines operations (a) and (b) above. (ab)Erase and copy: Erase a
column of data, and copy its content onto the empty locations in the matrix (these empty locations may include the currently
erased column). Our objective is, starting from our initial matrixA, to perform a minimum number of (ab) operations to reach
A∗.

We have yet to define the edge setE of our graphG. A pair (A′, A′′) is a directed edge inE if using a single (ab) operation
one can transformA′ into A′′. The distancebetween a matrixA and A∗ is the shortest path inG betweenA and A∗, and
corresponds to the minimum number of (ab) operations needed to transformA into the desired matrixA∗. We will show the
existence of an initial matrixA for which this distance is at least a certain lower boundlb.

Our proof has two steps. First, we show that the diameter ofG is at leastlb (namely there exist two matricesA′ and A′′
which arefar apart.

Theorem 5. The diameter ofG is at leastlb = Θ(n ·min(m, log∆ n/ log∗∆ n)).

We then show that this suffices to prove our assertion.

Corollary 6 . There exists a matrixA such that the distance betweenA andA∗ is at leastΘ(n ·min(m, log∆ n/ log∗∆ n)).

The proof of Corollary 6 is fairly simple and is given in full detail below. The proof of Theorem 5 is more involved and an
outline followed by a detailed proof will be given after the proof of Corollary 6.

1) Proof of Corollary6: Proof: Let A′ and A′′ be the matrices andlb be the bound from Theorem 5. Letd(A′, A′′)
denote the distance between two matricesA′ and A′′ in G. It holds (by our distance definition) thatd(A′, A∗) + d(A∗, A′′) >
d(A′, A′′) > lb. Thus eitherd(A′, A∗) > lb/2 and we are done (setA = A′); or d(A∗, A′′) > lb/2. Notice that in the latter
case our proof is not done as we wish to find a matrixA such thatd(A, A∗) is large, while we are in the case thatd(A∗, A)
is large (here we stress that the distanced is not symmetric).

To overcome this difficulty we will define two matricesA1 and A2 as follows. We start by noticing that there exists
a matrix, which we denote byA1, close to A′′ for which the empty entries ofA1 are all located in the last∆ columns.
More specifically,d(A′′, A1) 6 ∆ and d(A1, A′′) 6 n. The matrix A1 is obtained fromA′′ by movingall the non-empty
entries in the last∆ columns to empty locations in the firstn columns. Now it holds thatd(A∗, A1) > lb/2− n (otherwise
d(A∗, A′′) 6 d(A∗, A1) + d(A1, A′′) < lb/2 which contradicts our assumption). Finally, we define a matrixA2 corresponding
to A1 for which d(A2, A∗) = d(A∗, A1) > lb/2− n. SettingA to be equal toA2 we conclude our proof.

The matrix A2 is obtained from the matrixA∗ by a permutation on the values of[mn]; the permutation is defined by
the matrix A1. Specifically, letπ be the permutation on[mn] such thatπ(A1) = A∗ (here for a matrixA = (aij) we
define the(i, j)’th entry of π(A) as π(ai,j)). Now settingA2 = π(A∗) and noticing that for any permutationπ there is an
edge inG between two matricesX and Y iff there is an edge inG betweenπ(X) and π(Y), it holds thatd(A∗, A1) =
d(π(A∗), π(A1)) = d(A2, A∗) > lb/2− n. We note that it is not hard to show the existence of a (different) matrixA such
that the distance betweenA and A∗ is at leastn (take any matrixA for which in each column some entry needs to be moved
to obtain A∗). Thus, for the corollary, we obtain a bound ofmax(lb/2− n, n) = Θ(n ·min(m, log∆ n/ log∗∆ n)).

2) Outline for proof of Theorem5: To prove Theorem 5 (our lower bound on the diameter ofG) we use a variation of the
following naive idea. For a matrixA, let dA be theout-degreeof A in G. Assume one could prove thatdA is bounded byD
for all matricesA ∈ S. This implies that awalk of length ` in G starting fromA can reach at mostD` different matrices of
S. One can now deduce that the diameter ofG is at least the smallest̀ such thatD` > |S|; or in other wordslb > logD |S|.

Applying this proof technique “as is” on our graphG will not yield a lower bound greater thann. We thus consider two
modifications. First of all, we consider a slightly different graphG′ = (S′, E′), which is a homomorphic image ofG. Namely,
for a given matrixA ∈ S let Bi be the set values that appear in thei’th column of A. We will identify A with the tuple
BA = (B1, . . . , Bn+∆); and S′ = {BA | A ∈ S} will consist of the set of such tuples. Two tuplesB = (B1, . . . , Bn+∆) and
B′ = (B′1, . . . , B′n+∆) are connected by a directed edge inE′ iff there exists matricesA and A′ with corresponding tuplesB

and B′ that are connected inG. It is not hard to verify that the diameter ofG is no less than the diameter ofG′. (In fact, we
can also show that the diameter ofG is no more than the diameter ofG′ plus n + ∆. So the two diameters are the same up to
an additive factor ofn + ∆.) We conclude that a lower bound ofΘ(n ·min(m, log∆ n/ log∗∆ n)) for the diameter ofG′ will
imply the same lower bound forG.

Up to this point we have discussed the first variation of the naive idea presented above: replacing the graphG by G′.
However, bounding the degreeD′ of G′ will not suffice to obtain a lower bound oflogD′ |S′| larger thann. The main reason
is that the maximum degreeD′ of G′ is too large. But we have noticed that only rarely may one visit vertices ofG′ with large
degree approaching this bound. Typically the degree of the vertices at hand will be fairly small. To utilize this observation,
we consider the maximum number of vertices inS′ reachable from a given vertexB by α > 1 steps instead of a single step
(for a single step, this value is exactly the vertex out-degree). This corresponds to the study of theα transitive closure ofG′
sometimes denoted as(G′)α. Namely, (G′)α consists of the vertex setS′, where two vertices are connected by an edge iff
there is a path of length at mostα between them inG′. Clearly, if (G′)α has diameterdiam, then G′ has diameter at least
diam · α. Studying(G′)α instead ofG′ allows us toaverage outthe differences between the degree of vertices inG′ and to
obtain the desired bound. In what follows we analyze the size ofS′ and the valueDegα of the maximum out-degree in(G′)α.

We then deduce a bound on the diameter ofG′ of lb > Θ
(

α logDegα
|S′|

)
which in turn implies the assertion of Theorem 5.

In what follows, for two functionsf and g, the notationf ' g will represent the fact thatlog f = Θ(log g). We also assume
that ∆ < n (otherwise there is a trivial lower and upper bound ofn).

C. The state spaceS′

We start by bounding (from below) the total number of configurations in the state spaceS′ at hand.

|S′| >
(

nm + ∆m
∆m

)
(nm)!
(m!)n > nnm

We explain our bound: We first choose the∆m location for the empty entries of our data matrix. This determines the size
of the setsB1, . . . , Bn+∆, say m1, . . . , mn+∆ where eachmi is at mostm. We then decide on the content of each setBi. If
the sets were ordered, the number of configurations would be exactly(nm)!. As they are not ordered this number should be
divided by Πn+∆

i=1 (mi)!. It is not hard to verify thatΠn+∆
i=1 (mi)! 6 (m!)n as ∑n+∆

i=1 mi = nm and eachmi is at mostm.

D. Degα: number of vertices reachable inα steps

We now bound (from above) the number of verticesDegα that can be reached usingα steps from any given initial vertex
in S′. We taken > α > ∆. We defineD(α) to be the number of different configurations a certain set ofα columns can take
in α steps.

Degα 6
(

n + ∆
α

)(
αm
∆m

)
(n + ∆)∆mD(α) ' nα+∆mD(α)

We explain our bound: We first pickα columns out of then + ∆ columns. There are now two types of changes that may have
been made in the data matrix, changes inside theα columns we picked (referred to as internal columns) and changes outside
these columns (referred to as external columns). We start with external changes. The external empty spaces may have been
filled with elements from the internal columns. This can be bounded by

(αm
∆m

)
to choose the internal elements, and(n + ∆)∆m

to distribute them among the external empty spaces (notice that there are at most∆m such empty spaces). Now we are left
to consider the number of internal configurations one may obtain. We denote this value byD(α). Namely, D(α) equals the
number of possible configurations obtainable in a given set ofα columns when erasing these columns one after the other. It is
clear thatD(α) 6 αmα, Indeed, for a rough bound notice that internal entries must appear in one of theα columns. Plugging
in this value ofD(α) will already yield nice results. However, to tighten the results we computeD(α) recursively. Namely,
for α > β > ∆ it holds that

D(α) 6
[(

α

β

)(
βm
∆m

)
α∆mD(β)

] α
β

'
[
αβ+∆mD(β)

] α
β

Again, we explain our bound. We would like to express the number of internal configuration obtainable inα stepsD(α) by
the number of internal configurations obtainable inβ stepsD(β) for β smaller thanα. The analysis is similar to the previous
one for Degα. We first compute how many configurations can be obtained inβ steps, and then raise this number byα/β. We
start by pickingβ columns out of theα at hand. For the upcoming discussion, we refer to theα columns as external columns
and to theβ columns as internal columns. Again, there may be two types of changes in the configuration, external and internal.
For external changes, we may fill some of the empty entries of the external columns with internal entries. This is counted for
by

(α
β

)(βm
∆m

)
α∆m. As before, the internal changes are attributed toD(β).

We now compute our lower bound. We have the freedom to fix the values ofα and β. For the first level of recursion, we
fix α = ∆ log∆ n and β = ∆ log∆ log∆ n = ∆ log(2)

∆ n. It holds thatn > α > β. Thus,Degα ' nα+∆mD(α) is approximately

n∆ log∆ n+∆m
[
(∆ log∆ n)∆ log(2)

∆ n+∆mD(∆ log(2)
∆ n)

] log∆ n

log(2)
∆ n

For ∆ < log∆ n it holds that

n
log(2)

∆ n
log∆ n ' ∆ log∆ n

Thus we have thatDegα '

n∆ log∆ n+∆ log(2)
∆ nn2∆mD(∆ log(2)

∆ n)

log∆ n

log(2)
∆ n

For the second step of our recursion, we need to computeD(α′) = D(∆ log(2)
∆ n). We do this by fixingα′ = ∆ log(2)

∆ n and

β′ = ∆ log(3)
∆ n. For ∆ < log(2)

∆ n it holds that

n
log(3)

∆ n
logn

∆ ' ∆ log(2)
∆ n

Thus we have thatDegα '

n∑3
i=1(∆ log(i)

∆ n+∆m)D(∆ log(3)
∆ n)

log∆ n

log(3)
∆ n

In general, we can continue the recursion as long as∆ < log(i)
∆ n, while for the base we takeD(∆) = ∆m∆. So all in all we

get

Degα 6 n∑
log∗∆ n
i=1 (∆ log(i)

∆ n+∆m)∆m∆ log∆ n
∆ ' n∆m log∗∆ nn∆ log∆ n

Finally, we evaluate our lower bound

lb > α
log∆ |S′|

log∆ Degα
' ∆mn log∆ n

∆m log∗∆ n + ∆ log∆ n
=

n
log∗∆ n/ log∆ n + 1/m

(1)

Which implies a lower bound of
lb = Θ(n ·min(m, log∆ n/ log∗∆ n))

Almost matching our upper bound ofΘ(n min(m, log∆ n)).

V. EFFICIENT CODING-BASED DATA MOVEMENT

We now focus our attention on data movement using coding, where∆ = 1. It is known that with coding,2n− 1 erasures
are sufficient and necessary in the worst case. What about minimizing the number of erasures for each given instance, instead
of just the worst case? (Certainly, for some instances, fewer than2n− 1 erasures are needed.) Our coding-based solution will
use the concept of “canonical labelling.”

Definition 7. [10] Let y ∈ [n− 2]. When we relabel then blocksB1, . . . , Bn asB′1, . . . , B′n, it is called a “canonical labelling with
parametery” if for any y + 1 6 i 6 n− 2 andi + 2 6 j 6 n, no data inB′j need to be moved intoB′i .

The following observation has been made in [10]: “Given an instance of the data-movement problem with∆ = 1, there
exists a coding-based solution usingn + y + 1 erasures if and only if there exists a canonical labelling with parametersy.” It
is NP hard to find a canonical labelling withy minimized [10]. However, we should notice that wheny = n− 2, any labelling
is a canonical labelling, and that would give us then + y + 1 = 2n− 1 erasures, which is worst-case optimal.

We present a very efficient coding-based algorithm that usesn + y + 1 erasures once a canonical labelling with parametery
is given. In the algorithm, a very small Galois field is used for computation (GF(q) with q > 3), and it generates parity-check
symbols with a small number of additions on average. Before this work, it was unknown how to find such strictly-optimal and
efficient solutions over small Galois fields [10]. Our algorithm achieves low coding complexity while minimizing the number
of erasures.

1110

5

3

7

6

9

1

12

8

14

4

2

13

(b)

10 11 12 13 141 2 3 4 5 6 7 8 9

(a)

Figure 1. Example of the data-movement problem withn = 14. We let y = 8. (a) The data-movement graphGd. If the datadi needs to be moved to page
pj, there is an edge from vertexi to vertex j. (b) The symbol graphGs. The solid edges are theblack edges, and the dashed edges are thered edges.

A. Coding-based Algorithm

The algorithm takes a canonical labelling with parametery as input. For simplicity, let us say that the original labelling
– B1, B2, . . . , Bn – is the canonical labelling. (It is just a matter of naming.) It has been shown in Section III that thenm
pages ofB1, . . . , Bn can be partitioned intom block-permutation sets. Our algorithm will work the same way for them
block-permutation sets. So for simplicity, in the following, we will consider only one block-permutation set, and call its pages
p1, p2, . . . , pn. For i ∈ [n], pi is the page in blockBi and originally holds the datadi. For i ∈ [n], the functionα(i) = j means
that the datadi need to be moved into the pagepj. (Here j ∈ [n].) By the definition of block-permutation set, we know that
{α(1), . . . , α(n)} = {1, . . . , n}. If α(i) = j, we sayα−1(j) = i. By the definition of canonical labelling with parametery, we
know that fori ∈ {y + 1, y + 2, . . . , n− 2}, α−1(i) 6 i + 1.

We will use only one auxiliary block. We call itB0, and call its pagep0. In our algorithm,B1, . . . , By will be erased twice,
while B0 and By+1, . . . , Bn will be erased only once.

We define a functionβ(i) for i ∈ {y + 2, y + 3, . . . , n}:
• If α−1(i− 1) 6 y + 1 and α−1(i− 1) 6= α(i), then β(i) = α−1(i− 1).
• If y + 2 6 α−1(i− 1) 6 i− 1, then β(i) = β(α−1(i− 1)).
• If α−1(i− 1) = i, or if α−1(i− 1) 6 y + 1 and α−1(i− 1) = α(i), then β(i) = NULL.
We define the setγi, for i ∈ [y + 1], as follows:

γi = {j | β(j) = i, y + 2 6 j 6 n}.

Example 8. An example is shown in Fig.1 (a). Heren = 14 andy = 8. For i ∈ [n], if α(i) = j (that is, the datadi need to be
moved into pagepj), we draw an edge from vertexi to vertexj. We call the graph thedata-movement graphGd.

Here we haveα(1) = 9, α(2) = 4, . . . , α(14) = 8, andα−1(1) = 12, α−1(2) = 13, . . . , α−1(14) = 4. We also have
β(10) = 1, β(11) = 8, β(12) = 8, β(13) = 1, β(14) = 6. Correspondingly,γ1 = {10, 13}, γ6 = {14}, γ8 = {11, 12}. When
i ∈ [y + 1] andi 6= 1, 6, 8, γi = ∅.

It is well known that a permutation consists of cycles.

Definition 9. A set of pagespi0 , pi1 , . . . , pix−1 is called apermutation cycleif for j = 0, 1, . . . , x − 1, α(ij) = ij+1 mod x. Here
ij ∈ [n] for all j. Among thex pages,pmax{ij |06j6x−1} is called thetail of the permutation cycle.

Example 10. The data-movement problem shown in Fig.1 (a) has three permutation cycles: (1)p1, p9, p6, p13, p2, p4, p14, p8,
p10, p12; (2) p3, p5, p7; (3) p11. Their tails arep14, p7 andp11, respectively.

Let us build a directed graphGs, called thesymbol graph, as follows.Gs hasn vertices labelled by1, . . . , n, which correspond
to the n pagesp1, . . . , pn. The edges ofGs have two colors: black and red. There is a black edge from vertexi to vertex
j if α(i) = j, j ∈ [y + 1] and pj is not the tail of its permutation cycle. There is a red edge from vertexi to vertex j if
y + 2 6 i 6 n, j ∈ [y + 1] and i ∈ γj.

Example 11. An example of the symbol graphGs is shown in Fig.1 (b). It corresponds to the data movement problem in Fig.1
(a). The black edges ofGs always form disjoint paths. In this example, the paths are: (1)7 → 3 → 5; (2) 13 → 2 → 4; (3) 10;
(4) 12 → 1 → 9 → 6; (5) 14 → 8; (6) 11. We call themblack paths. The “sources” of the above six black paths are vertices
7, 13, 10, 12, 14, 11, respectively, and their “sinks” are vertices5, 4, 10, 6, 8, 11, respectively.

It is easy to see that a black path can have at most one vertex from{y + 2, y + 3, . . . , n}; and if it does, that vertex must be its
source. For a red edge, its beginning point must be the source of a black path. The end point of a red edge is either the end of a
black path or the vertexα−1(y + 1).

We show that the symbol graphGs has a simple structure. LetGs be the undirected version ofGs. That is, if we covert all
the edges ofGs to be undirected edges, we getGs.

Lemma 12. Every connected component ofGs has at most one cycle.

Proof: Let us remove all the vertices ofGs that are not in any cycle, and call the remaining graphG0. Every cycle inG0
must have both black and red edges. Note that the black edges belong to the disjoint black paths, and the red edges have the
properties described in Example 11. Letx denote the number of red edges inG0. The beginning point of thex red edges (if
we view them as directed edges) belong tox different black paths. Since every vertex inG0 is in a cycle, and every beginning
point of a red edge (if we view it as a directed edge) ofG0 is incident to exactly one red edge and one black edge, each of
thosex black paths must also contain exactly one end point of a red edge (if we view it as a directed edge). So every vertex
in G0 has degree two. SoG0 consists of vertex-disjoint cycles. So all the cycles inGs are vertex-disjoint. If a path inGs
connects two cycles, the path would start with a red edge; but that red edge would have to share the starting point of another
red edge – the latter edge is in a cycle – which would be impossible. So every connected component ofGs has at most one
cycle.

We define a functionw(j) for j ∈ {y + 2, y + 3, . . . , n}. Given a cycleC in Gs, let us call its verticesi1, i2, . . . , ix. Then for
j ∈ {i1, i2, . . . , ix} ∩ {y + 2, y + 3, . . . , n}, let w(j) = −1 if j = max{{i1, i2, . . . , ix} ∩ {y + 2, y + 3, . . . , n}}, andw(j) = 1
otherwise. For a vertexj ∈ {y + 2, y + 3, . . . , n} not in any cycle ofGs, let w(j) = 1.

We now present the coding-based algorithm. It usesn + y + 1 erasures to move data. For simplicity, we choose the
computation to be overGF(3), whose elements are{0, 1,−1}. It is also feasible to useGF(q) with q > 3.

Algorithm 13 CODING-BASED DATA MOVEMENT

Step 1: Fori = 1, 2, . . . , y + 1, do:
• If pi is not thetail of its permutation cycle, write the datadi − dα−1(i) −∑j∈γ(i) w(j)dj into the pagepi−1; otherwise, write

the datadi −∑j∈γ(i) w(j)dj into the pagepi−1.
• Erase the blockBi.
Step 2: Fori = y + 1, y + 2, . . . , n− 1, write the datadα−1(i) into the pagepi, then erase the blockBi+1.
Step 3: Write the datadα−1(n) into the pagepn, then erase the blockBy.
Step 4: Fori = y, y− 1, . . . , 1, write the datadα−1(i) into the pagepi, then erase the blockBi−1.

Example 14. Let the data movement problem be as shown in Fig.1 (a), and we use Algorithm13 to move data. The data stored
in the pagesp0, . . . , p14 during the data movement process are shown in Fig.2. Note thatp1, . . . , py are erased twice each, while
py+1, . . . , pn andp0 are erased once each. The total number of erasures isn + y + 1.

pages p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14
data d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14

d1 − d12 d2 − d13 d3 − d7 d4 − d2 d5 − d3 d6 − d9 d7 d8 − d14 d9 − d1 d1 d8 d11 d10 d6 d4
−d10 − d13 +d14 −d12 − d11

d12 d13 d7 d2 d3 d9 d5 d14

Figure 2. Example of the coding-based data movement algorithm.

B. Analysis

To prove that the algorithm is correct, the key is to prove that at any moment of the data-movement process, all the data can
be recovered by decoding the data currently stored in the pages. For that, it is helpful to observe the one-to-one correspondence
between the data written into the pages and the vertices/edges of the symbol graphGs: Every vertexi ∈ [n] of Gs corresponds
to the datadi, and the edges entering a vertexi correspond to the data written intopi−1 before pi is erased.(That is why
Gs is called thesymbol graph.) For example, let us look at vertex 1 in Fig. 1 (b). It has three incoming edges, respectively
from vertex 12, 10 and 13. Those incoming edges correspond to the symbold1 − d12 − d10 − d13. From Fig. 2, we see that
was the symbol written intop0 (beforep1 is erased by the algorithm for the first time). The vertex 1 itself corresponds to the
symbol d1, which was initially stored inp1 and later written intop9 (which are also shown in Fig. 2). Algorithm 13 always
sequentially writes and erases symbol pairs sharing a common variable (i.e.,di for somei), which correspond to a vertex and
its adjacent edge(s) inGs. This makes the stored symbols always linearly independent.

Theorem 15 When Algorithm13 is used to move data, at any moment, all the datad1, d2, . . . , dn can be recovered by decoding
the data currently stored in the pagesp0, p1, . . . , pn.

Proof: We analyze the four steps of the algorithm, and use the symbol graphGs for explanation. Note the one-to-one
correspondence between the data written into the pages and the vertices/edges ofGs, which is shown above.

In step 1, every time a data symboldi is erased (with1 6 i 6 y + 1), the symbol corresponding to the edges entering vertex
i of Gs has been stored. So for any symboldj with 1 6 j 6 y + 1, there is a set of stored symbolsdi0 , di1 − di0 − f0, di2 −
di1 − f1, . . . , dix − dix−1 − fx−1, such thatdik = α(dik−1

) for 1 6 k 6 x, dix = dj, and f0, . . . , fx−1 are linear functions of
dy+2, dy+3, . . . , dn. The symbolsdy+2, dy+3, . . . , dn are all stored. Sodj can be decoded.

In step 2, consider a vertexi of Gs (with 1 6 i 6 y + 1) and the vertices inγi = {i1, i2, . . . , ix}. Let i0 = i, and let
i1 < i2 < · · · < ix. Note that(i1, i0), (i2, i0), . . . , (ix, i0) are the red edges that share the same end pointi0 in Gs. For
j = 1, 2, . . . , x, right before the symboldij is erased (from pagepij), the symboldij−1 has been stored (in pagepij−1). By the
way we set the linear functions of the stored symbols and the fact that every connected component ofGs has at most one
cycle, no subset of stored symbols can be linearly dependent. So all data can be recovered.

In steps 3 and 4, for any symboldj, either there is a set of stored symbolsdi0 , di0 − di1 − f0, di1 − di2 − f1, . . . , dix−1 − dix −
fx−1 with dik = α(dik+1

) for all k, or there is a set of stored symbolsdi0 , di1 − di0 − f0, di2 − di1 − f1, . . . , dix − dix−1 − fx−1,
with dik = α(dik−1

) for all k, such thatdix = dj and f0, . . . , fx−1 are linear functions ofdy+2, dy+3, . . . , dn. By the way the
linear functions of the symbols are set and the fact that every connected component ofGs has at most one cycle, we see that
dj can be decoded. Therefore, Algorithm 13 can successfully move data usingn + y + 1 6 2n− 1 erasures.

VI. H ARDNESS OFOPTIMIZING DATA MOVEMENT FOREACH INSTANCE

In the last section, we have presented a coding-based algorithm that moves data usingn + y + 1 6 2n− 1 erasures, once a
canonical labelling ofB1, . . . , Bn with parametery 6 n− 2 is given. On the other hand, there exists a data-movement solution
using n + y + 1 erasures if and only if there exists a canonical labelling with parametery. So the presented algorithm is
strictly optimal. However, it is NP hard to find an optimal coding-based solution if the the canonical labelling with minimized
parametery is not given first [10]. A natural question is: What is the complexity of finding the best solution without coding
for each specific instance of the data-movement problem? (Again, this optimization is per-instance instead of for the worst
case.) We study this topic in this section.

We will prove the NP hardness of non-coding solutions for a slightly generalized version of the data-movement problem.
Let’s allow some original data to be just erased, instead of moved. More specifically, we change the functionα to α :
{1, . . . , n} × {1, . . . , m} → {1, . . . , n} ∪ {⊥}, whereα(i, j) = ⊥ means that the datadi,j just need to be erased, instead of
moved. This is a very practical generalization, because in flash memories, there are usually pages whose data are no longer
useful, and such pages are labelled as “invalid” in flash memories to be erased later [5]. Let us call this version thegeneralized
data-movement problem.

For i, j ∈ [n], let d(i → j) denote the number of pages of data that need to move from blockBi to block Bj. That is,
d(i → j) = |{k | k ∈ [m], α(i, k) = j}|. We now define a concept called themovement graphGm.

Definition 16. (MOVEMENT GRAPH) Corresponding to a generalized data-movement problem, we build a directed graphGm =
(V, E) as follows. We letV = {v1, v2, · · · , vn}, wherevi represents the blockBi for i ∈ [n]. For anyi, j ∈ [n] andi 6= j, there
ared(i → j) directed edges from vertexvi to vj. This graphGm = (V, E) is called the “movement graph.”

Definition 17. (PERMUTED LABELLING , ASCENDING EDGES, AND DESCENDING EDGES) Let π be a permutation of{1, 2, · · · , n}.
That is,π(i) ∈ [n] for anyi ∈ [n], andπ(i) 6= π(j) for anyi 6= j ∈ [n]. Let Π denote the set of all then! such permutations. Let
π−1 be the inverse function ofπ.

Given a permutationπ, in the movement graphGm = (V, E), we call an edge fromvi to vj an “ascending edge” if π−1(i) <

π−1(j); we call it a “descending edge” if π−1(i) > π−1(j). Let Aπ denote the set of ascending edges andDπ denote the set of
descending edges, given the permutationπ. Note thatE = Aπ ∪Dπ. The permutationπ is also called a “permuted labelling” of
the graphGm.

We first present a (tight) lower bound for the number of erasures. The concept of “canonical data-movement solution” used
in the following proof will also be used later for proving NP hardness and approximation results.

Theorem 18. For data-movement solutions without coding, the number of erasures needed for moving data is at least

n + dminπ∈Π |Aπ |+ ∑i∈[n] d(i → i)
m

e.

And when∆ > dminπ∈Π |Aπ |+∑i∈[n] d(i→i)
m e, this bound is tight.

Proof: Let k denote a non-negative integer, and letπ denote a permutation of{1, 2, · · · , n}. We call a data-movement
solution “canonical” if – for some k and π – it consists of the following three steps:
• Step 1: Fori = n + 1, n + 2, · · · , n + k, write data into the auxiliary blockBi.
• Step 2: Fori = π(1), π(2), · · · , π(n), eraseBi and then write data intoBi.
• Step 3: Fori = n + 1, n + 2, · · · , n + k, erase the auxiliary blockBi.
Let P denote the generalized data movement problem. LetP∞ denote the same data movement problem except that we

change the number of auxiliary blocks from∆ to ∞. Clearly, the number of erasures needed for problemP is no less than
that for problemP∞. The idea of the proof is as follows:
• First, we show that for any solution to problemP that usesx erasures, there is a corresponding “canonical” solution to

problemP∞ that also usesx erasures;

• Next, we show that every “canonical” solution to problemP∞ uses at leastn + dminπ∈Π |Aπ |+∑i∈[n] d(i→i)
m e erasures.

Let us now prove the first step.
Let s denote a solution to problemP that usesx erasures. Fori = 1, 2, · · · , n + ∆, let yi denote the number of times that

block Bi is erased in solutions. (Clearly, x = ∑n+∆
i=1 yi.) We construct a “canonical” solution to problemP∞ that usesx

erasures in the following way:
• Let z = n.
• For i = n + 1, n + 2, · · · , n + ∆ and j = 1, 2, · · · , yi, do: Increasez by one, then write into the auxiliary blockBz the

data that were written intoBi in the solutions between its(j− 1)-th erasure and itsj-th erasure.
• For i = 1, 2, · · · , n and j = 1, 2, · · · , yi − 1, do: Increasez by one, then write into the auxiliary blockBz the data that

were written intoBi in the solutions between itsi-th erasure and its(i + 1)-th erasure.
• Let π be such a permutation of{1, 2, · · · , n}: in the solutions, ∀ 1 6 i < j 6 n, the blockBπ(i) was erased for the last

time (i.e., for itsyπ(i)-th time) before the blockBπ(j) was erased for the last time (i.e., for itsyπ(j)-th time).
• For i = π(1), π(2), · · · , π(n), erase blockBi, then write intoBi the data that were written intoBi in the solutions after

its yi-th erasure.
• For i = n + 1, n + 2, · · · , z, erase the auxiliaryBi.
The above solution is indeed a feasible solution to problemP∞ because of its correspondence to the solutions. What differs

the new solution from the solutions is that instead of erasing data from a block, the new solution keeps the data in some
auxiliary block. (And that makes the new solution feasible since no less data is preserved during the data movement process.)
The new solution is a “canonical” solution, where the integer parameterk = ∑n+∆

i=n+1 yi + ∑n
i=1(yi − 1) = x − n and the

permutation parameterπ is as specified above. The new solution usesk + n = x erasures. So the first step in our proof is
shown to be correct.

Let us now prove the second step.
A “ canonical” solution to problemP∞ first writes data into auxiliary blocks, then erases the blocksBπ(1), Bπ(2), · · · , Bπ(n)

sequentially based on some permutationπ (and writes data into them after the erasures), and finally erases all the auxiliary
blocks. Letπ−1 denote the inverse function ofπ. What kind of data needs to be written into the auxiliary blocks? For the
data originally in the pagepi,j (wherei ∈ [n] and j ∈ [m]), namelydi,j, we have

• If π−1(α(i, j)) > π−1(i), then di,j needs to be written into the auxiliary blocks, because otherwise, whenBi is erased,
the datadi,j would be lost. (Note thatdi,j needs to be moved intoBα(i,j), and in the solution,Bi is erased beforeBα(i,j).)

• If π−1(α(i, j)) = π−1(i) (i.e., α(i, j) = i), thendi,j needs to be written into the auxiliary blocks, because otherwise, when
Bi is erased, the data would be lost.

• If π−1(α(i, j)) < π−1(i), then di,j does not need to be written into the auxiliary blocks, because whenBi is erased, it
has already been moved intoBα(i,j).

• If π−1(α(i, j)) = φ, thendi,j does not need to be written into the auxiliary blocks, because the data just need to be erased.
In the above four cases, there are|Aπ | pages of data in the first case because every such page of data corresponds to an

ascending edgein the movement graphwhose permuted labelling isπ. There are∑i∈[n] d(i → i) pages of data in the second

case. So the canonical solution needs at leastdminπ∈Π |Aπ |+∑i∈[n] d(i→i)
m e auxiliary blocks to store the data in the first and second

cases. So the solution needs at leastn + dminπ∈Π |Aπ |+∑i∈[n] d(i→i)
m e erasures. So the second step of the proof is also shown to

be correct. On the other side, when∆ > dminπ∈Π |Aπ |+∑i∈[n] d(i→i)
m e, the solution described above is also feasible, so the lower

bound becomes tight.

Theorem 19. For the generalized data-movement problem, it is NP hard to find per-instance optimal solutions without coding.

Proof: It is sufficient to prove that the problem is NP hard when∆ > nm. When ∆ > nm, an optimal solution
can be transformed into a canonical optimal solution in polynomial time. Also, if a canonical optimal solution is known, a

permuted labelling(i.e., permutation)π for the movement graph that minimizes the valued |Aπ |+∑i∈[n] d(i→i)
m e can be found

in polynomial time, and vice versa. (Both are shown in the proof of Theorem 18.) LetF = ((∑i∈[n] d(i → i)) mod m). We
see that0 6 F 6 m− 1 and F is fixed given the instance of the problem. The above observations show that it is sufficient to
prove that it is NP hard to find a permutationπ that minimizesd |Aπ |+F

m e.
Let π0 be a permutation such that|Aπ0 | = minπ∈Π |Aπ |. Let π∗ be a permutation such that|Aπ∗ | = dminπ∈Π |Aπ |+F

m e.
(So |Aπ∗ | > |Aπ0 |, but d |A∗π |+F

m e = d |Aπ0 |+F
m e.) We will prove two claims:

• CLAIM ONE : It is APX-hard to findπ0.
• CLAIM TWO : It is NP hard to findπ∗.
First, we proveCLAIM ONE using a reduction from the APX-hardminimum feedback arc set problem. Given a permutation

π, we can easily find theascending edgesAπ. Since every cycle in the movement graphGm = (V, E) must contain an
ascending edge,Aπ is also afeedback arc setof G. (A feedback arc set of a direct graph is a subset of edges such that every

cycle contains at least one edge from the subset.) On the other side, given a feedback arc setS ⊆ E of G, we can easily find a
topological ordering of the vertices of the directed acyclic graphGS = (V, E− S) such that all the edges ofGS are descending
edges. (Note that a topological ordering is also a permutation of the vertices.) So if we useπS to denote this topological
ordering, thenAπS ⊆ S. So it is not difficult to see that a minimum feedback arc set is also a minimum set of ascending
edges, and vice versa. (Also note that every directed graph can be the movement graph of a data movement problem.) So
finding π0 is equivalent to the minimum feedback arc set problem, which is APX hard. SoCLAIM ONE is true.

We now proveCLAIM TWO by contradiction. Suppose that there is a polynomial-time algorithm to findπ∗. We have shown
that finding π0 is APX-hard, which means that there exists a constantc > 1 such that no polynomial-time algorithm can
guarantee to find a permutationπ with the property|Aπ | < c|Aπ0 |, assumingP 6= NP. Let Gz = (Vz, Ez) be a graph that
consists ofz copies of the data movement graphG = (V, E), wherez = d m

c−1e. Clearly, Gz is also the data movement graph

of a data movement problem, and its optimal data movement solution useszn + d z(|Aπ0 |+∑i∈[n] d(i→i))
m e erasures. (W.l.o.g., we

can assume that|Aπ0 | > 1.) We can use the polynomial-time algorithm to find an optimal solution forGz that applies the same

permutationπ′ to the z subgraphs ofGz, which useszn + d z(|Aπ′ |+∑i∈[n] d(i→i))
m e erasures. Sozn + d z(|Aπ0 |+∑i∈[n] d(i→i))

m e =

zn + d z(|Aπ′ |+∑i∈[n] d(i→i))
m e. Sod z(|Aπ0 |+F)

m e = d z(|Aπ′ |+F)
m e. Soz(|Aπ′ |+ F) 6 z(|Aπ0 |+ F) + (m− 1). So |Aπ′ | 6 |Aπ0 |+

m−1
z = |Aπ0 |+ m−1

dm/(c−1)e < |Aπ0 |+ (c− 1) 6 |Aπ0 |(1 + c−1
|Aπ0 |

) 6 |Aπ0 |(1 + c− 1) = c|Aπ0 |. That contradicts the fact that

no polynomial-time algorithm can guarantee to find a permutationπ with the property|Aπ | < c|Aπ0 |, assumingP 6= NP.
So it is NP hard to findπ∗. So CLAIM TWO is true, and the theorem is proved.

Let us now study approximation algorithms for the data movement problem, for the case where∆ > nm. In this case,
canonical solutions exist; and to minimize the number of erasures, we just need to find a permuted labellingπ that minimizes
the number of ascending edges. As shown in the proof of Theorem 19, this is the same as finding the minimum feedback arc
set. There are known approximation algorithms for the latter problem [3]. We now present the corresponding approximation
algorithm for the data movement problem.

Algorithm 20 . (Canonical data-movement algorithm without coding)
Let Gm = (V, E) be the movement graph. LetF be a known approximation algorithm for the minimum feedback arc set

problem.
1) Use the algorithmF to find a feedback arc setS of the movement graphGm.
2) Find a topological orderingπ of the acyclic directed graphGS = (V, E− S), such that all the edges ofGS are descending

edges. (Note that a topological ordering is also a permutation of the vertices.)

3) Let π be the permuted ordering forGm. Let S′ ⊆ S be the set of ascending edges inS.2 Let z = d |S
′ |+∑i∈[n] d(i→i)

m e.
4) Write into the auxiliary blocksBn+1, Bn+2, · · · , Bn+z the data that either correspond to the “ascending edges” or are

required by this problem to stay in their original blocks.
5) For i = π(1), π(2), · · · , π(n), erase blockBi, then write into it the data that are required to be moved into it by this

problem.
6) Erase the auxiliary blocksBn+1, Bn+2, · · · , Bn+z.

The following result analyzes the approximation ratio of Algorithm 24.

Theorem 21. Let c denote the approximation ratio of the known algorithmF for the size of the feedback arc set. Then the
approximation ratio of Algorithm24 for the number of erasures is at most

3c
2c + 1

+
1
n
≈ 3c

2c + 1
< min{3

2
, c}.

Proof: Let S∗ be the minimum feedback arc set of the movement graphGm. Then the algorithmF finds a feedback arc

set S of size |S| 6 c|S∗|. The optimal solution without coding to the data movement problem usesn + d |S
∗ |+∑i∈[n] d(i→i)

m e
erasures. Algorithm 24 usesn + d |S|+∑i∈[n] d(i→i)

m e erasures. We have|S| 6 nm−∑i∈[n] d(i→i)
2 because it is trivial to obtain a

2In fact, sinceS′ ⊆ S is also a feedback arc set, a carefully designed algorithmF will have S′ = S.

feedback arc set inG that consists of half of its edges. So the approximation ratio of Algorithm 24 is

n+d |S|+∑i∈[n] d(i→i)
m e

n+d |S
∗|+∑i∈[n] d(i→i)

m e

<
n+

|S|+∑i∈[n] d(i→i)
m +1

n+
|S∗|+∑i∈[n] d(i→i)

m

6 n+
|S|+∑i∈[n] d(i→i)

m

n+
|S∗|+∑i∈[n] d(i→i)

m

+ 1
n

6 n+ nm/2
m

n+ nm/2c
m

+ 1
n

= n+ n
2

n+ n
2c

+ 1
n

= 3c
2c+1 + 1

n

VII. C ONCLUSIONS

In this paper, we present both coding and non-coding based algorithms for efficient data movement in flash memories. By
proving a lower bound for the number of erasures used by algorithms without coding, we rigorously show the advantage of
coding. The hardness and the approximation of per-instance optimization are also studied.

APPENDIX

We describe here an algorithm for the non-coding data movement problem that is efficient and has a straightforward
implementation. The model we use is slightly different from the one in previous sections, but only for the sake of a clear
description. More specifically, we model the data by anm× n matrix. Each entry is labeled with a number from0 to n− 1,
specifying the destination block. For each labeli, there are exactlym entries labeled withi. In the construction below we use
n = m = 2p and∆ = 2. It is not hard to verify that the construction extends to genearal∆ and arbitrarym > n (by changing
the underlying alphabet used in the construction from 2 to∆ symbols).

A. Decomposition by Hall’s Theorem

We can apply the well known Hall’s theorem from combinatorics to decompose the matrix inton setsS0, . . . , Sn−1, such
that each set contains all the numbers from0 to n− 1 exactly once, and also each set contains exactly one number from each
column. For completeness, we include Hall’s theorem below [2]:

Theorem 22.[Hall] There exists a system of distinct representatives for a family ofn sets iff the union of anyk of these sets
contains at leastk elements for allk from 1 to n.

In our case a set is a column, and the family of sets is the entire matrix. It is easy to verify that the union of anyk columns,
for all k from 1 to n contains at leastk different numbers. Therefore the theorem applies, and the decomposition can be found
in O(n3 log n), or O(mn2 log n) in general [1], while this does not involve any erasure.

B. Data Movement by Twice Transpose

The data movement problem can be solved by two applications of an algorithm that realizes the transpose of the matrix.
First, we decompose the matrix by Hall’s theorem, to obtain the setsS0, . . . , Sn−1 as described before. Withn erasures, by
changing the position of pages within each column, each setSi can be moved to occupy thei-th row of the matrix. After the
first transpose, each setSi will ocuppy thei-th column. Withn more erasures, again rearrangements within each column, every
setSi can be ordered from0 to n− 1. Finally, the second transpose gives the desired configuration. We show an example for
a 4× 4 matrix.

Example 23. The Hall decomposition is shown by using card suits, indexed by the original number of the entry. Notice that each
suit has all the indexes from 0 to 3. Then we rearrange each column such that at the end every suit appears in one line. After the
first transpose, every suit appears in one column. After another vertical rearrangement of each column followed by a transpose,
we reach the final state where all indexesi belong to columni, for i ∈ {0, . . . , n− 1}.




3 2 1 0
1 3 3 2
2 0 0 1
0 2 1 3


→

Hall decomposition︷ ︸︸ ︷


♠3 ♣2 ♠1 ♦0
♦1 ♥3 ♦3 ♠2
♥2 ♠0 ♥0 ♥1
♣0 ♦2 ♣1 ♣3


→

First transpose︷ ︸︸ ︷


♠3 ♠0 ♠1 ♠2
♥2 ♥3 ♥0 ♥1
♦1 ♦2 ♦3 ♦0
♣0 ♣2 ♣1 ♣3


→




♠3 ♥2 ♦1 ♣0
♠0 ♥3 ♦2 ♣2
♠1 ♥0 ♦3 ♣1
♠2 ♥1 ♦0 ♣3


→

Second transpose︷ ︸︸ ︷


♠0 ♥0 ♦0 ♣0
♠1 ♥1 ♦1 ♣1
♠2 ♥2 ♦2 ♣2
♠3 ♥3 ♦3 ♣3


→




♠0 ♠1 ♠2 ♠3
♥0 ♥1 ♥2 ♥3
♦0 ♦1 ♦2 ♦3
♣0 ♣1 ♣2 ♣3




The basic step of the algorithm is an exchange of entries between two columns. Therefore, the vertical position of pages in
a column is not important at the beginning of the algorithm, and we can exclude then erasures that were mentioned before
each transpose.

C. Bit-Fixing Algorithm for Transpose

We now describe the algorithm that realizes the transpose of a square matrix withn = 2p columns. It is shown as Algorithm 24
below. The guiding principle of the algorithm is to use the binary representation of the column indexes (and of the matrix
entries), and move the data between columns such that corresponding bits of the entries are in agreement with those of
the columns, therefore by “fixing the bits”. The outer loop hasp steps, corresponding to each of thep bits in the binary
representation. They can be fixed in any order, but for the sake of a definition we chose the one from least to most significant.
For each bit that is fixed, we maken/2 = 2p−1 pairs of columns. The condition is that for each pair, the binary representation
of their indexes has to agree on the bits that have already been fixed. Again, for the simplicity of defining the algorithm, we
choose the pairs such that the binary representations of their indexes agree on all the bits, except the one being fixed in the
current round. A pair is defined by the columnsB0 andB1 in the algorithm. For any such pair, we rearrange their entries such
that they agree with the column index on the biti that is currently being fixed. The correctness of the algorithm is shown by
the following theorem.

Algorithm 24 . BIT-FIXING ALGORITHM FOR TRANSPOSE

INPUT: Square matrixA =




0 0 · · · 0
1 1 · · · 1
...

... · · · ...
n− 1 n− 1 · · · n− 1


, wheren is a power of 2,n = 2p.

OUTPUT: The transpose ofA.
ALGORITHM: For i = 0 to p− 1, and fork = 0 to 2p−1 − 1, do:
1) Let (bp−2 . . . b1b0) be the binary representation ofk.
2) Let B0 be the column with binary index(bp−2 . . . bi 0 bi−1 . . . b1b0).
3) Let B1 be the column with binary index(bp−2 . . . bi 1 bi−1 . . . b1b0).
4) BetweenB0 andB1, move entries whosei-th bit is 0 to B0 and those whosei-th bit is 1 to B1.

Theorem 25. TheBIT-FIXING TRANSPOSEAlgorithm is correct, namely it realizes the transpose of the input matrix. The number
of block erasures isn log n, using only two extra blocks of memory.

Proof: We give a proof by induction over the number of bits that are fixed. We want to prove the following property:
“after fixing k bits, k ∈ {1, . . . , (log n) − 1}, each column contains exactly2p−k numbers, each one of them appearing2k

times.”
Basis case: it is easy to verify that the property is true fork = 1. After fixing the first bit, any odd column will contain all

the odd numbers, each appearing twice, and the same is true for even columns and numbers.
Suppose the property is true for any number of bits up tok, k ∈ {1, . . . (log n)− 1}. We prove that after fixing the(k + 1)-th

bit the property is still preserved. Consider an assignment(bk−1 . . . b0) of the firstk bits. There are2p−k numbers whose binary
representation agrees with the assignment(bk−1 . . . b0), and from the induction hypothesis it follows that any column whose
index agrees with(bk−1 . . . b0) must contain all these2p−k numbers. Therefore the set of columns that agree with(bk−1 . . . b0)
has cardinality2p−k, and any such column contains all the possible numbers than can agree with(bk−1 . . . b0), for a total of
2p−k numbers, each appearing2k times in any of the columns. The algorithm exchanges data between columns that agree on
the first k bits, and do not agree on the(k + 1)-th. Therefore, for each pair,n/2 of the numbers in a column agree with the
(k + 1)-th bit of the column index, andn/2 do not. Therefore, after fixing the(k + 1)-th bit the property is still preserved.

After fixing the last bit, every column will contain just one number, that is equal to the column index, thereby realizing the
transpose.

To count the number of erasures, there arelog n steps in the outer loop. Each inner loop can be done with2 n erasures,
assuming two extra columns because each pair of columns can exchange their data with4 erasures by simply copying them to
the extra columns and back in the desired order. In fact, by rotating the extra space, namely by copying the pair to the extra
space in the order dictated by fixing the bit and using the space of the pair as the new empty space, the inner loop can be
realized byn erasures. Therefore, the algorithm makesn log n when rotating the empty space.

Example 26. We show the execution of theBIT-FIXING TRANSPOSEAlgorithm for n = 8. The top row is the binary column
index, and the bottom row indicates the pairs of columnspi, i ∈ {1, . . . , n/2}, used to move the data.

000 001 010 011 100 101 110 111
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
p1 p1 p2 p2 p3 p3 p4 p4

Pairs used to fixb0

b0→

000 001 010 011 100 101 110 111
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
2 3 2 3 2 3 2 3
4 5 4 5 4 5 4 5
4 5 4 5 4 5 4 5
6 7 6 7 6 7 6 7
6 7 6 7 6 7 6 7
p1 p2 p1 p2 p3 p4 p3 p4

Pairs used to fixb1

b1→

000 001 010 011 100 101 110 111
0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3
4 5 6 7 4 5 6 7
4 5 6 7 4 5 6 7
4 5 6 7 4 5 6 7
4 5 6 7 4 5 6 7
p1 p2 p3 p4 p1 p2 p3 p4

Pairs used to fixb2

b2→

000 001 010 011 100 101 110 111
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

REFERENCES

[1] N. Alon, “A simple algorithm for edge-coloring bipartite multigraphs,” inInf. Process. Lett., vol. 85, no. 6, pp. 301–302, 2003.
[2] B. Bollobás,Random Graphs (2nd Edition). Cambridge University Press, 2001.
[3] G. Even, J. Naor, B. Schieber and M. Sudan, “Approximating minimum feedback sets and multi-cuts in directed graphs,” inProc. 4th Int. Conf. on

Integer Prog. and Combinatorial Optimization, Lecture Notes in Comput. Sci. 920, Springer-Verlag, pp. 14-28, 1995.
[4] H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing floating codes for expected performance,” inProc. of the Annual Allerton Conference, 2008.
[5] E. Gal and S. Toledo, “Algorithms and data structures for flash memories,” inACM Computing Surveys, vol. 37, no. 2, pp. 138-163, June 2005.
[6] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint information storage in write asymmetric memories,” inProc. IEEE International Symposium

on Information Theory (ISIT), Nice, France, Jun. 2007, pp. 1166–1170.
[7] A. Jiang, M. Langberg, M. Schwartz and J. Bruck, “Universal rewriting in constrained memories,” inProc. IEEE International Symposium on Information

Theory (ISIT), Seoul, Korea, 2009, pp. 1219-1223.
[8] A. Jiang, H. Li and Y. Wang, “Error scrubbing codes for flash memories,” inProc. Canadian Workshop on Information Theory (CWIT), Ottawa, Canada,

May 2009, pp. 32-35.
[9] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation for flash memories,” inIEEE Transactions on Information Theory, vol. 55, no. 6,

pp. 2659-2673, June 2009.
[10] A. Jiang, R. Mateescu, E. Yaakobi, J. Bruck, P. Siegel, A. Vardy and J. Wolf, “Storage coding for wear leveling in flash memories,” inProc. IEEE

International Symposium on Information Theory (ISIT), Seoul, Korea, 2009, pp. 1229-1233.
[11] A. Jiang, M. Schwartz and J. Bruck, “Error-correcting codes for rank modulation,”Proc. IEEE International Symposium on Information Theory (ISIT),

Toronto, Canada, July 2008, pp. 1736-1740.
[12] E. Yaakobi, A. Vardy, P. H. Siegel, and J. K. Wolf, “Multidimensional flash codes,” inProc. of the Annual Allerton Conference, 2008.

