Low-Complexity Array Codes for Random and
Clustered 4-Erasures

Yuval CassutoMember, IEEEand Jehoshua Bruclellow, IEEE

Abstract—A new family of low-complexity array codes parity bits. In addition to its toll on performance, a highdagpe
is proposed for correcting 4 column erasures. The new complexity increases device wear and shrinks devicenifesi.
codes are tailored for the new error model of clustered Looking on the clustered-failure problem from a coding-
column erasures that captures the properties of high- theoretic perspective, combating a failure channel thatois
order failure combinations in storage arrays. The model of memoryless requires the departure from common constructs
clustered column erasures considers the number of erasedlike ¢ erasure-correcting codeand concepts like thlamming
columns, together with the number of clusters into which distance These only consider the number of erasures within
they fall, without pre-defining the sizes of the clusters. a code block, and not their relative locations. To captuee th
This model addresses the problem of correlated device failure-clustering phenomenon in a coding-theoreticsgtta
failures in storage arrays, whereby each failure event precise model definition of clustered erasures is needegl. Th
may affect multiple devices in a single cluster. The new clustering model proposed in section Il classifies erasone-c
codes correct essentially all combinations of clustered binations by the number of erased columns, bypthe number
erasures, i.e. those combinations that fall into three or Ies of clustersin which the erased columns fall. The number of
clusters. The new codes are significantly more efficient, in clusters captures the number of “independent” failure tyen
all relevant complexity measures, than the best knowrt- each possibly affecting multiple devices in a single cluste
erasure correcting codes. These measures include encodingf contiguous devices. An example of this characterizatibn
complexity, decoding complexity and update complexity. erasure patterns is given in Figure 1 for patterns wits 4

Index Terms—Array codes, clustered erasures, correlated fail- erasures. The present erasure characterization is difftaed

ures, storage arrays

I. INTRODUCTION (@)

RRAY codes have long become a pivotal tool for pro-

tecting data reliability and availability in multi-device
storage systems. Initially, only trivial codes were usdte t
repetition code in RAID-1 arrays, and the parity code in
RAID-5 arrays. With the scaling of device capacities, deman
had grown for higher failure protection, using redundancy-
efficient schemes. Consequently, 2-erasure correctingy arr
codes are being deployed in RAID-6 storage arrays. But
even this increased erasure correction capability was show
to be insufficient against failure clustering, which restdfom
correlated failure events [12]. That issue of clusteredhhig
order failures due to rare catastrophic events motivates
construction of array codes that specifically target cheste
erasures. Such codes become an attractive option if they are
able to alleviate the high implementation complexity of gen
high-order erasure-correcting codes. The main implentienta
bottlenecks of high-order array codes are their encodiry an
decoding complexities — and more dominantly — their upda(fg
complexity. A high complexity of updates means that writes
to the array are slowed down due to the need to update many

. . L . Figure1. Classification of column combinations by their respective
34ggvalY Cbassg,to N Rvé'th SH'taCS" Glogil gsgig%ge U?(Xmozog'espumbers of clusters. Four columns (marked with X) that fatbi
erpa uena i an ose, , DA e-mailj. .
yuval.cassuto@hitachigst.com). ga) One cluster (b) Two clusters (c) Three clusters (d) Fdusters
Jehoshua Bruck is with the Department of Electrical EngingeCalifornia (non-clustered)

Institute of Technology, 1200 E California Blvd., Mail Coii86-93, Pasadena,

CA 91125, U.S.A. (e-mail: bruck@paradise.caltech.edu). inla. ;
This work was supported in part by the Caltech Lee Center fivaAced stronger) from the multlple burst erasure model [2]’ aoisl

Networking. not predefine the clustsizes only theirnumber For example,
1The acronym RAID stands for Redundant Array of Inexpensiisk®[13] an erasure model that requires correcting= 4 erasures in

up to2 clusters covers the single erasure burst in (a), and tAecolumn erasureccurs when, for some physical reason, the
two possible patternsf two clusters in (b) of Figure 1. contents of a particular column cannot be used by the decoder

This problem of clustered erasures is addressed in this pape erasure is a model for a device failure whereby all the data
for the case oft erasures. The main contribution is a stronglysn the device (or other physical unit) is known to have become
systematic array-code family that correctsakrasures in up unusable. We say that an array with given column erasures
to two clusters, and all but a vanishing numbereérasures is correctableby the array code if there exists a decoding
falling into three clusters. The new code family enjoys aig algorithm that, independent of the specific array conteras,
icant reduction in complexity compared to the best knawn reconstruct the original array from unerased columns dxiy.
erasure array codes. The encoding and decoding compiexiieray code is called MDSMaximum Distance Separabld
are each reduced 2%, and the update complexity is slashedt has r redundant columns and it can correct all possible
by 28.57%. That improvement in implementation efficiencycombinations ofr column erasures. MDS codes obviously
comes at the price of degrademhdomerasure correctability, have the strongest conceivable erasure correction cityabil
although 7/8 of the totality of-erasure combinations are stillfor a given redundancy, since thieinformation columns can
correctable. be recovered fronany k columns. Beyond space efficiency

There have been prior attempts to improve the implef the code, one should also consider its I/O efficiency. I/O
mentation efficiency of array codes by departing from thefficiency of a storage array is determined by fmeall-write
requirement to correct all possiblieerasures [7], [11]. How- and full-columnupdate complexities of the array code used.
ever, these attempts used “black-box” compositions of know he small-write update complexity (often simply called afsl
codes, which result in poor clustered and random eraswamplexity) is defined as the number of parity-bit updates
correctability, compared to the results of this paper. Thigue required for a single information bit update, averaged over
property achieved by the new code construction is that it cafl information bits. Appendix A shows how the small-write
correct erasure combinationslioth 2-even + 2-odd columns, update complexity is calculated for a sample array code.
and 3-even + 1-odd columns (and the complement 3-oddTHe full-column update complexity is the number of parity
1l-even). The 2+2 case alone can be achieved by a standariimns that have to be modified per a single full-column
interleaving of 2-erasure codes, and the 3+1 case aloneujxlate. Another crucial performance measure of an arrag cod
corrected by splitting a parity group of a 3-erasure code [} its erasure-decoding complexjtdefined as the number of
To get clustered-erasure correctability, both the 2+2 antl 3bit operations (additions, shifts) required to recoveredtesed
combinations are required, hence lies the novelty of thiepa columns from the surviving ones.

Various aspects of the new code family are studied in the
paper. In sec_tlon v, the che construc_tlon |s_sp_eC|f|e_d B Random/Clustered erasure correction
both geometric and algebraic forms. With clarity in mind,
the construction method is presented in two steps: first-(sub T0 describe column-erasure combinations whose only re-
section IV-A) the code is specified in a structured form, argriction is the number of erased columns, it is customary to
then (sub-section IV-B) the column placement is permutét$e the somewhat misleading terandom([9] erasures.

to obtain the final code that enjoys better clustered-eeas¥qasinition 1. An array is said to recover from random

correctlon (:apablll_ty. The co_d_es erasure_corr_ectlon b&_iﬂa .erasuresif it can correct all combinations qf erased columns.
is proved in section V. Efficient decoding is described in

section VI, and the reliability of arrays that employ the nevihe random erasure model is most natural when storage
code is analyzed in section VII, using a Markov probabilitpodes are known to, or more commonly, assumed to behave
model. A summarizing comparison between the new code awidiformly and independent of each other. Indeed, almost all

the best knowr-erasure array code concludes the presentatigfray-code constructions discussed in the literature a@m a
in section VIII. correcting random erasures. Refinement of the erasure risodel

possible by adding restrictions on the relative locatiohthe
erased columns. This paper considdusterederasures, where
the p erasures fall into a limited< p) number of clusters. We
A. Array codes now turn to some definitions related to the clustered-eeasur

The definitions in this sub-section are standard in the argwdel. In words, alusteris a contiguous block of columns.
of array codes. The next sub-section presents new notatibtqre precisely,

specifically for clustered-erasure correctionlehgthn array Definition 2. In an array code with columns numbered

code consists ofi columns. When array codes are used i .
. . : 0,1,2,...,n— 1}, acluster is a set ofc columns such that

storage arrays, a column is a model for a physical device pr’ "’ .

; : ; e difference between the highest numbered column and the
another physical unit of data. In the codes discussed hefeWest numbered one is exacthy— 1
there arek columns that store uncoded information bits and ’
r columns that store redundant parity bits (thus= k+r). For example{2,3,4,5} is a cluster withoc = 4. Now given
This array structure has the advantage that informatiorbeana set of columns, the number of clusters that it occupiesais th
read off a device directly without decoding, unless it stftea partition of that set to a minimal number of subsets, each of
failure, in which case a decoding process is invoked. Anyarravhich is a cluster according to the definition above. Now we

code that admits this structure is callsttongly systematic include another definition that will be useful later.

II. DEFINITIONS AND NOTATIONS

Definition 3. A set of p columns is callectlustered if the (p+ 4), with p information columns and parity columns.
number of clusters it occupiess¥ictly less tharp. Discussing generalized EVENODD in depth is beyond the

ope of this paper, so we only mention their key properties
Lla%at are relevant to the current presentation.

« Whenp is a prime such tha is a primitive elementin the
Galois Field GKp), they correct any random 4-erasure
(hence they are MDS codes for these parameters).
Their asymptotic small-write update-complexity 7s—
0(1). o(1) refers to terms that tend to zero as the
code length goes to infinity. Their full-column update-
complexity is4.

e The best known way to decode them is using the algo-
The purpose of this section is to discuss relevant known rithm of [5] over the polynomial ringR, (to be defined
results in sufficient detail to prepare for the presentatibn later), for which the decoding complexity is dominated

the new code family in the next section. It also presents the by the termdkp.

mathematical framework that is used to prove the new cod@§ the state-of-the-art in correcting 4-erasures, the géized

correction properties. (r = 4) EVENODD codes are used as comparison to the new
codes constructed herein.

Random erasures have no restriction on their respective n
bers of clusters and therefore they include both cluster
and non-clustered erasures. The other extreme icdhenn
burst model, where all erased columns need to fall into a
single cluster. These two well-studied extreme cases open o
presentation, and later the new codes are shown to be very
effective for all intermediate cases of clustered erasures

IlIl. PRELIMINARIES AND RELEVANT KNOWN RESULTS

A. Codes for erasures in a single cluster .
9 C. Mathematical framework

Assume that our design goal is an array that wil SUStamWe now describe the mathematical framework, borrowed

any erasure op columns in a single cluster, without requiringf om Blaum-Roth [5], to present the new codes. The length

any random-erasure correction capability. A simple and wel ; ;
p — 1 columns of the code array are viewed as polynomials

known technique callednterleaving can achieve that taskr% degree< p — 2 over the finite fieldF, taken modulo the

optimally both with respect to the required redundancy apolynomial M, (x), where My(x) = (xP +1)/(x +1) =

in terms of the code update complexity. xP~1 4 xP=2 4 ... + x +1 (recall that inF, summation and

Let CP be an array code witl’ columns, out of which .)
, , P . y e . subtraction are the same and both done using the Boolean eX-
k' = n’ — 1 are information columns. The remaining column

holds the bit-wise parity of thek’ information columns. %Lrlsévi.:; fucncﬁtl?‘:r)]. AeCC(;nglig [to that V'eW]Tth.i %ﬂzg?e"g'a
Define the codeCP, as the lengthn = pn’ code that is inary cofumn v = 160,---/Cp—2] |

obtained by the interleaving of codewords ofCP. In other c(a) = co+cro+- - - +cppal . Bit-wise addition modulo
words, ifc®,c®@, .., c() arep codewords o’ P, then the 2 of two columns is equivalent to summing the correspond-

di q d il b ing polynomials in the ring of polynomials modulbf,(x),
corresponding code word P, will be denotedR,. Multiplying c(«) by & results in a downward

EREEIEEAE e shift of ¢ if c,_, is zero. In the case,_, = 1, multiplying

- _ by « requires reduction moduld1,(x), and thusac(x) is

P.roposmon 4. The codeCP, corrects anyp erasures in a obtained by first downward shiftin@o,...,cp_g,, O]T, and

single cluster. then inverting all the bits of the shifted vector. The rif,
Proof: Any erasure that is confined to at mgstonsec- allows an algebraic representation of codes whose encoding

utive columns erases at most one column of each constitufies comprise column bit-wise additions (ring additionga

CP code. These single erasures are correctable by the ingflumn shift-and-invert operations (ring multiplicatjon

vidual CP codes. m Throughout the paper, we assume that the prime number

It is clear that the codéP, has optimal redundancy since itp iS chosen such that 2 is a primitive element in (BF

satisfiesp = r andp is a well known and obvious lower boundhence M, (x) is irreducible, and the ringR, becomes a

on the redundancy. For anyp, the codeCP, has update finite field[10, p.197]. The correctability of erasure patterns is

complexity (both small-write and full-column) df, which is Proved by showing that the determinant of sub-matrices@f th

optimal since a lower update complexity would imply at leagiode parity-check matrix are non-zero in the fiétd, (note

one code bit that is independent of all other bits, and eeastifat the fieldR, is really GR27~1), with a specific mapping

of that bit would not be correctable. from lengthp — 1 vectors to field elements).
IV. CoDE CONSTRUCTION
B. Codes for random erasures: EVENODD Referring to Figure 2, the proposed code family las

At the other extreme of the erasure-clustering classificatiinformation columns (white) op — 1 bits each, and parity
are codes that correct amyrandom erasures. For the speciatolumns (shaded) with the same number of bits. With clarity
case ofp = 4, which is the case addressed in the current paper,mind, we present the new code family in two steps. The
the best known random-erasure correcting codes, in terfirst step, included in sub-section IV-A, orders the infotima
of implementation complexity, is the family of generalized¢olumns in a way that reveals their structure. Then, in sub-
EVENODD codes [4]. The generalized £ 4) EVENODD section IV-B, the order of the information columns is pereait
codes are defined over arrays with dimensigmps— 1) x to achieve better clustered-erasure correction.

S 2L 2 000000000
SR i] s o o e e e ok A
B B AREEEERNnN

Figure2. The proposed code array wittp information columns and
4 parity columns. The column size js— 1.

A. The structured definition of the code

n ek
x> e
e
L0

The information columns are numbered in ascending order
from left to right using the integer40,1,2,...,2p — 1}.
Parity columns are not numbered and we use letter label
for them: {P, S1, R0, Q}. Each of thep — 1 bits in a parity Q
column is computed from the bit content of its parity group. ** |]
The structure of the parity groups is now explained via a
graphical illustration, for the example gf = 5. For each
of the four parity columns depicted in the four arrays in
Figure 3, array locations with the same shape indicate ltiegt t
belong to the same parity group. Similarly to the EVENODD
code [3], parity groups are constrained by the code to hav
either even or odd parity, depending on the instantaneous
array contents, as will be specified shortly. Parity column
P, located at the left most column, is simply the bit-wise
even parity of thep information columns. Parity colum§l,
located second from left, is the slopel diagonal parity of
the odd numbered information column§l, 3,...,2p — 1}.
The bit groups ofS1 are set to have even parity if the bits el
markedEO have even parity, and odd parity otherwise. Parityiy e 3 Pparity groups forp = 5. From top to bottom: the parity
column(Q, located at the right most column, is the XOR of thgroups of parity columr® (slope 0),51 (slope -1),Q (slope 1) and
slope1 diagonal parities of both the even numbered colum® (slope 2). Parity column®0 and S1 each depend on only half
and the odd numbered columns. Parity coluf®, located of the columns, contributing to the low implementation cdemjiy
second from right, is the slofde diagonal parity of theeven of the code.
numbered information column{d, 2, ...,2p — 2}. The parity
groups ofQ and RO, similarly to those ofS1, are set to be e following for the case = 5.
even/odd, based on the parity of the correspon&i@ggroups.

()

o s mx

b O |] X%
()

()
A0

e
15
e
u

/N
ki
N

L S0
ek

odd ones. An important fact that will be used in subsequent 0 0|1 1 a a a® o® «

sections is that even |_nformat|on columns with the parity,e correspondence between the parity groups depicted in
bits of PO, Q0, RO constitute an = 3 MDS code [4], and Figyre 3 and the parity-check matrix above is as follows.
odd information columns with the parity bits @1, Q1,51 The columns of the parity-check matrix correspond to colsmn
constitute a (differenty = 3 MDS code [8]. of the code array. The two left most columns are for parity
For a formal definition of the code we include the explicitolumnsP and S1, and the two right most columns are for

encoding functions. Denote lay; the bit in rowi of informa- R0 and Q. Columns in between correspond to information
tion columnt. For an integet, define(l) to bel mod p. The columns in the array. In the parity-check matrix, row
formulas to compute thé" bit of each of the parity columns represents the constraints enforced by parity coldinnows

Note that parity column® and Q can be decomposed into | 1 0|1 1 1 14 1 13 1 12 1 100
P = P0@® P1 andQ = Q0@ Q1, respectively, wher®0, Q0 01101 0 «® 0 &« 0 a 0 a |00
depend only on even information columns &ty Q1 only on 00[10a* 0 06;1 0 a 0 OCZ 0110

w

ad ot at|0 1

P,Q, R0, S1 are provided in Figure 4. 2,3, 4 similarly represent the parity constraints $f, R0, Q,
The encoding of information bits into a code array isespectively. In any row, the difference of exponents afin

illustrated in the example of Figure 5. two different columns is exactly the relative vertical sloif the

Algebraic description two columns in the shape layout of the appropriate parity in

An equivalent description of the parity constraints of Fegd Figure 3. For example, in the top row, all information colsnn
is the code’s parity-check matrix ové&,, which appears in have the same elemerit(= a?), to account for the identical

2p—1 p
Pi= P cij 110,110 01,10 1[0
j=0 1 [alolol1lololol 1] 1)1
p—1
ol la1lol1lololol1lolol1
S1i=EO1 @ @ e(ivj) 2js1 -
=0 ol folol1lrlolalalol1]l1
p—1
a
where EO; = @C<p71+]‘),2]‘+1 @
j=0
S1
r—1
RO; = EOy & EB Cliaj)2j 1 1 10 1 0L 0
j=0 0 o 1] Fo| i1l 11
p-1 tl fo| Tol Tol o 1
where EOg = ¢/ 1912 R e -
0 g (p—1-2j),2j 0 0 1 1 0 1
p—1 p—1 (b) o
Qi = EOq ® (P c(i—j)2) ® (D ciimjypj1) /
j=0 j=0
Q
S S 04)[(13 0)](0s D[(140] 1] 0] 41
where EOg = (P cip-1-j)2) ® (D cp1-jy2j1) Sl e CRe e P i |-
j=0 j=0 (149]0+D)/Qs9 0] 1A D[40
Figure4. Explicit specification of parity constraints. (10 (L @ 0| 0 (1s 0) ,'[O,u D] el
0+ 0] 1] 1[04 D|(T+0/(T+ 1| 40
vertical alignment of the shapes in the encoding rule oftpari e e e e
P. For generap the parity check matri¥d has the following (c)
form.
10/111.--- 1 1 1 1 -+ 1 100 RO
b 0101 --- 0 «a/ 0 o« Ut ... x 00 0 1 0 1 1 0
“|00[10---a¥ 0 20t 0 ... 0 (10 1.0 ol Jol J1} 70
U Y S RS S IS S |
00j11 o o « fo4 ot 011 R Tol 1l ol |1
0 v o] 1] {1

B. The permuted definition of the code

In the previous sub-section, the layout of information (d)
columns with respect to the parity groups was done in an ordgjure5. Encoding example. Each parity group from Figure 3 is
that reveals the code’s structure. Nevertheless, it tuahshat shown here traversed by a dotted line. (a) Parity columalways
using this structured order for the actual layout of columryen parity) (b) The groups of parity colunsii have odd parity since
& non-traversed (EO) bit group has an odd number of ongShe

in the array does not provide the optimal clustered-eras P|roups of parity columrQ have even parity since the non-traversed

correctability. In this sub-section we specify a mappingmr it group (E0) has an even number of ones. (d) The groups @jpar
the information-column numbers in the structured definit® column RO have odd parity since the non-traversed bit group (EO)
information column numbers in the actual code specificatioas an odd number of ones.
which is later called th@ermuted codeThis mapping is given
as a permutationp on the se{0,...,2p —1}.
. Sincep is odd, the last equation is a contradiction to the
£ = (2t 2p)+tmod 2, te{0,...,2p—1}. P P ' d .
(t) = (2t) mod (2p) + t mod 2, t€{0,..., 2p — 1} assumption that both have the same parity.

Proposition 5.1 is a permutation of0, ...,2p — 1}. Case 2:Without loss of generality is even and is odd. Then
Proof: It is first observed tha < 1(t) < 2p, because (2f) mod (2p) = (2I) mod (2p) + 1. This is a contradiction
there is no index with (2f) mod (2p) = 2p — 1. Now if) is since the left hand side is even while the right hand side is

not a permutation, then there exist distinct inditgssuch that odd. u

(2t) mod (2p) + t mod 2 = (2I) mod (2p) + mod 2. The permutationp has the following important properties.
Case 1:Botht, ! are odd or both are even, and assume without

loss of generality < I. Then (2¢t) mod (2p) = (2I) mod Property 1: ¢(t) =t (mod 2) (odd indices are mapped
(2p). And consequentll = 2t + 2p, and in turnl = t+ to odd indices and even indices are mapped to even indices).

Property 2: A pair of indices2j and2j 4 p are mapped to property that even information columns in the structuredeco

a pair of adjacent indice3! and2/ 4+ 1. are mapped to even information columns in the permuted
code, and odd information columns in the structured code
The inverse permutatiop—! is defined next. are mapped to odd information columns in the permuted code

(Property 1 in sub-section IV-B). On the other hand, Lemma 9

specifically refers to the structured code, since it specifie
1/ _ |8 s mod 4 column indices beyond their even/odd property.

vs) = {ZJ * ([2] mod 2) The first lemma uses reduction to= 3 codes for 3 even

. A o
Proof: We first observe that fas € {0,...,2p — 1}, the 1 odd or 3 odd + 1 even erasure combinations.
expression fory~1(s) satisfies0 < ¥~1(s) < 2p, since Lemma7.For a combination o# erasures, iB columns are

Proposition 6. The inverse permutation df is

|s/2] < p. Now we write the expression fap(yp~1(s)). either even numbered information columns or parity columns
1 . 1 in {R0O, P,Q}, and1 column is an odd numbered information
Y~ (s)) = (297 (s)) mod (2p) +¢~ (s) mod 2 cojumn or the parity columi$1, then it is a correctabld-
= 2 FJ 4_1[,*1(5) mod 2 (2) erasure. The complement case:odd (or S1 or P or Q)
2 and1 even (orR0), is correctable as well. (in particular, any
s—smod 241~ (s) mod 2 combination of 3 erasures is correctable).
= s—smod2+smod?2 ®) Proof: The code can correct the erasure combinations

= s under consideration using a two-step procedure, descfdred
the 3 even + 1 odd case (the complement case is the same,
up to changing the identities of parity columns). The firspst

is to recover the single erased odd information column.&inc
only one odd column is erased, parity colusihcan be used

to recover all of its bits. Then, when all odd columns are
available,P1 and Q1 are computed and used to fii) and

QO from P and Q (if not erased) by

(2) is becausep - x
the fact thaty—1(s)
fo

= 0 (mod 2p) for any x. (3) is from
(s) =
evaluatingy—1(s)

s (mod 2), which can be verified by
r all four different modulo4 values ofs.

The permuted code is now defined usithg at columnt of
the permuted code the colump(t) of the structured code is
placed (said another way, columarof the structured code is

placed at columnp~1(s) of the permuted code). This results PO=P1&P , Q0=Q14Q
in the parity-check matrix of the permuted code to be . .
After that step, between even information columns &utj
1011 17--- 1 11 1 --- 1 100| PoandQo, only3 columns are missing. Since even columns,
H — 010> 0 -+ 0 10 a?--- a |00| RO, POandQO constitute an EVENODD code with= 3, the
001 0 a*--- aP"20a*> 0 --- 0 |10 3missingcolumns can be recovered. The complement case of
00|11 a o+ a1 1 a o® --- aP"1{0 1| 3 odd andl even column erasures is settled by the fact that
(4) odd columns withS1, P1 and Q1 constitute arr = 3 MDS
From property 2 above, the bottom row has changedde [8]. m

from [1,1,& a,...,aP"},a?~!] in H (equation (1)) to To get clustered erasure correction, the code should also

[La,...,ar71,1,a,...,aP71] in H' (equation (4)). This correct 2 even + 2 odd erasure combinations.

modified order will be shown in the next section to eIiminatE 8. Wh 5 7 binati "

uncorrectable erasure combinations witlor 3 clusters. -emmao. enp > o, 1ora combination OF erasures,
if 2 columns are even numbered information columns 2and

columns are odd numbered information columns, then it is a
correctablét-erasure.

In this section we prove that the permuted code specified
in the previous section can correct dHerasures falling into
two or less clusters, as well as all but a vanishing number
4-erasures falling into three clusters. Hence the proposdd ¢

V. ERASURE CORRECTABILITY OF THE PERMUTED CODES

Proof: For the case o2 even and2 odd information-
c?Iumn erasures we write in (5) the corresponding sub-matri
R/l of the parity-check matri¥{ in a general form.

family can correct essentially all clustered erasures.ddoer, 1 1 1 1
consldermg random-ergsure correctability, we prove avats Mldm) — 0 0 at am)
portion of all combinations of4 erasures are correctable by 1 a2 0 0

the code. 1 o o om

To prove the correctability of the erasure patterns, the

A. Correction lemmas determinant ofM needs to be non-zero for all combinations
We start by a sequence of lemmas that will be used in thé j, [, m that satisfy

next sub-sections to prove the clustered and random erasure
correctability of the codes. Recall that tBg + 4 columns of
the code are labeleflP, 51,0,1,...,2p —2,2p —1,R0,Q}. Note that assuming that the left most column is column 0 does
Note that Lemma 7 and Lemma 8 are agnostic to whetheot limit generality, since any column combination withé¢ug
the structured or the permuted code is used, thanks to theolumn has the same determinant as a combination with the

0<li<mg<p—-1, 0<j<p—1

0 column, up to a multiplication by a non-zero constant iBincem > I, the first term is non-zero. The second term has
Rp. This fact is proved by observing that shifting the columan odd number of monomials and therefore cannot be 0. For
combination such that one of the even columns is the 0 colurpn> 3 it also cannot equaM, («).

is equivalent to multiplying each of rows 2-4 by non-zero The sub-matrix that corresponds to case 3 is

constants. ' 01 1 0
Evaluating the determinant ot Urdim) gives _

MmO _ |10 a0

‘M(j,l,m)’ = qlrm G 2tlem =lm 3 01 0 1

01 o 0

R T L
(o + 1) (a7 1)
~(ocj+0cj+l_m+ocl_m+ocj_m+l) 0<I<p-1
The determinant now equals

The variablel satisfies the conditions

Sincej > 0 andm > [, the first two terms in the product are

non-zero. The last term has an odd number of monomials, and My _
. Mz’ = a+1
therefore cannot be 0. For> 5 it also cannot equal, («),
the modulus of the fieldk,,. B The determinant above is non-zerd if> 0, a condition that

The next lemma treats additional erasure combinations tligtequivalent to requiring that the even and odd information
include parity columns and that are not covered by Lemmadblumns are not numberéd, 2i 4+ 1, respectively, fod < i <

Lemma9.If p > 3, the following 4-erasure combinations aré L "
correctable by the structured code. -
1) S1, 1 odd information column an@ even information B. Clustered erasure correctability
columns Finally, we are ready to prove the main results of the paper.
2) RO, 1 even information column an2 odd information The structured codes are next shown to correct all 4-erasure
columns in up to two clusters, and asymptotically all 4-erasure$iee

3) R0,51,1 even information column aridodd information clusters.
column, except pairs of information columns numberetheorem 10. For p > 5, the permuted code corrects all 4-

2i,2i+1,for0<i<p—1. erasures that fall into at most two clusters.
Proof: The sub-matrix that corresponds to case 1 is Proof: If a 4-erasure falls into two or less clusters, then it
01 1 1 either has3 even andl odd columns (or the complement) or
. 10 0 o 2 even and2 odd columns. If all columns are information
MY’) = 01 o¥ 0 columns, the 3+1 case is covered by Lemma 7, and the

I 2+2 case (forp > 5) by Lemma 8. If P or Q (or both)

j -)
01 « & are erased, then the remaining columns can be neither all

The variablesj, ! satisfy the conditions odd (or S1) nor all even (orR0), cases which are covered
' by Lemma 7 as well. The case of only one $f and R0
0<I<p—-1, 0<j<p-1 erased is covered by cases 1 and 2 of Lemma 9, respectively.

Finally, 4-erasures with bott61 and RO erased that are
not covered by case 3 of Lemma 9 caot fall into two
’M(Ll)‘ = (1) (ol) or less clusters. The information colum@g 2i + 1 of the
1 structured code are at locatio2$, 2] + p in the permuted
Sincej > 0, the first term is non-zero. The second term ha&®de. Hence uncorrectable combinatidid, 2i,2i + 1, R0}
an odd number of monomials and therefore cannot be 0. Firthe structured code from Lemma 9 map to combinations

Evaluating the determinant o%1, gives

p > 3 it also cannot equaM, (). {81,21,21 + p, RO} that occupy more than two clusters in
The sub-matrix that corresponds to case 2 is the permuted code.
1 1 1 0 . .
(Lm) 0 a! a ™ 0 Theorem 11.Forp > 5, the ratio between the number of three-
My = 1 0 0 1 cluster4-erasures correctable by the permuted code and the
1 o a" 0 total number of three-clustdrerasures is greater th@rd72.

As p goes to infinity, this ratio tends ta

The variable, m satisfy the conditions Proof: If a 4-erasure falls into three clusters, then it either

0<l<m<p—1 has2 even and®2 odd columns o8B even andl odd columns
(or the complement). Lemmas 7, 8 and 9 address all such com-
The determinant now equals binations, except the following. Combinatiof$1,0, p, RO}

and{S1,p—1,2p—1,R0} mapped from{S1,0,1, R0} and
], _ _ ; ; .
‘Mé m)‘ = (a'+a ™) (a +a"+1) {S1,2p —2,2p — 1, RO}, respectively, which are exceptions

to case 3 of Lemma 9. Also{P, S1,2i +1,2j+ 1} and Proof: Building on Lemmas 7, 8 and 9, the number of
{2i,2j, R0, Q} cannot be corrected as they are not includetbrrectable 4-erasures equals

in Lemma 7. 1))
Hence the number of non-correctable 4-erasures with three 13 77
clusters is — 2
p 2(!)(p+1) (p+12 + (2)(2)
242
* (2) + 2p<§)+ .
. . —— N——
The total number of 4-erasures with three clusters is (3) (4)
op_1 (1), obtained by Lemma 7, is the number of ways to
3(p3) select3 even information columns (oR0 or P or Q) and

1 odd information column (061), multiplied by 2 to include

_ _ 3 _ the complement case, and subtracting the doubly counted

(in general this equal8(";”) for lengthn arrays since by combinations with botH? and Q.

taking any choice oB points from a set oz — 3 points on (2), obtained by Lemma 8, is the number of ways to select

a line, we can uniquely obtain an erasure combination witheyen an® odd information columns.

three clusters, following the procedure below. We first @0 (3), obtained by cases 1 and 2 of Lemma 9, is the number

3 points out of the: — 3 points to be the cluster-start locationsef ways to selec® even information columns ant odd in-

Then the point that represents the cluster with gireselected formation column, multiplied by to include the complement

from these3 points (for that we have the fact8). Given these case.

choices, the 3 clusters are obtained by augmenting the sizg4), obtained by case 3 of Lemma 9, is the number of

2 cluster with an additional point to its right and in additionvays to select an even information column and an odd

augmenting each of the two left points with a point to its tighnformation column that are not one of the two combinations

as a cluster spacer. Hence any such choice gives a 3—c)ust95.1,o, p, RO} and {S1,p —1,2p — 1, R0}, not correctable
Thus the ratio between the number of correctable 3-clustey Lemma 9.

4-erasures and the total number of 3-cluster 4-erasuredsqu The total number of 4-erasure combinations is

2p+4
3¢y -2-20) _ pPP—p+2 < ’)
3% 4p3 —12p2+11p -3 Taking the ratio of the two we obtain
7p* +34p3 + 59p% +33p + 10

For p = 11 (the smallest primep > 5 with 2 primitive in
GF(p)), the ratio attains its minimal value 6f972. Moreover,
it is readily seen that this ratio equals— o(1), whereo(1)

8p* +40p3 + 70p2 4+ 50p + 12
For p = 11, the ratio attains its minimal value df.865.

are terms that tend to zero asgoes to infinity. m Moreover, it is readily seen that this ratio equajs —o(1).
The only uncorrectable clustered erasure combinations are -
ones that include parity erasures. Had we lifted the re- V1. EFFICIENT DECODING OFERASURES

quirement from the codes to be strongly systematic (i.e. to

) T : In section V, the decodability of clustered and random
have dedicated columns for parity bits), it would have been . i : .
: - . erasures was proved by algebraic reasoning. In this section
possible to correct all clustered erasures. A similar rédanc . i
we take a more constructive path and study efficient ways

in correction capability of strongly systematic codes was 9, decode random and clustered erasures. The puroose of
the part of generalized EVENODD codes [4], compared to thﬁz. o ; ' purp
this analysis is to prove that decoding of the new code can

similar non-systematic codes of [5]. While the latter areSB/IDbe done usingdkp + o(p?) bit operations, while the best

for any r-erasure correction, the former haveparameters . ! .
y P known algorithm for a 4-erasure correcting MDS code is

\év(;tlzr::;:orrectable erasure combinations that |ncIudet3par|4kp+0(P2) [5]. Since k is taken to be in the order of,

saving aboukp bit operations gives a quadratic (if) savings
in computations that is very significant in practice for kg
For the decoding-complexity analysis, we only consider

C. Random erasure correctability erasure of 4information columns, since these are the most
complex cases to decode. We moreover only consider erasures
of two even columns and two odd columns, since it was shown
in Lemma 7 that the three even and one odd case (or three
odd and one even) reduces to decoding three erasures on the
Theorem 12. For p > 5, the ratio between the number ofeven (or odd) columns of the code. Throughout the section
4-erasures that are correctable by the permuted code andwtieewill assume that one of the erased columns is the left-
total number oft-erasures is greater th@r865. As p goes to most even information column, as all other cases are cyilica
infinity, this ratio tends t& /8 = 0.875. equivalent.

The codes are next shown to correc? 88 portion of all
combinations o# erasures.

A. Description of 4-erasure decoding algorithm Calculating e; then reduces to the following chain of

A general 4-erasure can be decoded using a straightforwSficulations
procedure oveiR,. Ways to perform the steps of that proce- 1) Finding the inverse of
dure in an efficient way are the topic of the next sub-section. ((x” + o + a¥ 4+ Tl oc”“”) (14 a”) overR,.
The erased symbols, which represent the content of thecerase2) Multiplication of sparseR, elements by dens&,
array columns, are denoted Ky, 01, ¢, 05 }. €1, 2 have even elements. The sparse elements are the four elements
locations andoq, 0, have odd locations. First the syndrome from the E matrix (that have a small{ 3) constant
vectors of the array is calculated by taking the product number of non-zero monomials, for apyand the dense
g elements are the four syndrome elements.

s=har 3) Multiplication of two densék, elements resulting from
wherer is the length2p + 4 column vector overk, that the previous steps.
represents the array contents, with erased columns set to
the zero element. From the sparsity of the matkx the
complexity of obtaining the syndrome vectordsp (R0 and B. Analysis of 4-erasure decoding algorithm
S1 each checks only half of the columns). Now the erased

columns can be directly recovered by We now analyze the number of bit operations required for

each decoding task.
€1

1) Finding inverses of R, elements
01

— 14 (6) The inverse of an elemenf(a) € R, is the element
€2 fla) that satisfiesf(x)f(x) + a(x)My(x) = 1, for
02 some polynomialz(x). When f(«) is invertible, the
whereE denotes thel x 4 sub-matrix of H that corresponds polynomial f(x) can be found by the Extended Eu-
to the 4 erased columns’ locations: clid Algorithm for finding the greatest common divi-
1 1 1 1 sor of the polynomialsf(x) and M, (x). An efficient
0 ! 0 al algorithm for polynomial greatest common divisors is
1 (1) 2 8 given in [1, Ch.8] that require®(plog* p) bit opera-
1 o oé - tions (O(log p) polynomial multiplications, each taking
O(plog® p) bit operations, as shown in item 3 below).
Recall from (1) that each; is an element iR, of the form 2) Multiplication of a sparse R, element by a dense
oli, for some0 < I; < p — 1. ThereforeE can be written as R, element requiresO(p) bit operations. Since the
number of non-zero monomials in the sparse polynomial

E:

1 1 1 1 . : L . N

0 at 0 o is copstant inp, the tnvgl polynom|a_l_mul'upllcatlon
E=|1 7 % algorithm requireD(p) shifts and additions moduld.

1 O;U o 3) Multiplication of two dense R, elementscan be done

in O(plog®p) bit operations using Fourier-domain
polynomial multiplication [1, Ch.7]. We describe this
procedure for the special case of polynomial coefficients
1 over GK2). Let N > 2p — 2 be the smallest such

The inverse ofE, which is used in (6) to decode erasures, is
now given in a closed form

ET = (af+a+a+) integer of the formN = 2/ — 1, where/ is an integer.
[1+a? 0 0 0 -1 Let w be a principalNth root of unity in the finite field
0 at 4+ a® 0 0 GF(2%). Thenw defines a Discrete Fourier Transform
0 0 1+ a? 0 on lengthN vectors over GR2/). The product of two
0 0 0 ot + a® polynomials of degre@ — 2 or less can be obtained by
:azu(auww) ot F20+w PRI N, 1 element-wise multiplication of their individual Discrete
a0 o (P P T) alt o (1+a) Fourier Transforms, and then applying the Inverse Dis-
ol +a® attw 1+a+a® 1 crete Fourier Transform to the resulting lengéhvector.
L Ocv+w ¢X1‘+ZU(¢X“+£XU+¢X“+D) ol oc"’(l#»oc”)

Using the FFT algorithm, each transformation requires
From (6) and the closed-form expression above, the erased O(Nlog N) operations over GR¢), or O(Nlog3 N)
symbole; can be recovered by the following product bit operations. The element-wise multiplication requires
N multiplications over GR2!), or O(Nlog? N) hbit
operations. Sinc&N < 4p, the total number of bit op-
erations needed for multiplying two dens, elements

Oncee; is known,e, can be recovered using a simple parity 'S O(plog’ p).

completion with the aid of parity columRO. The bits of the Since each of the decoding operations in 1-3 above has a
odd columns are then recovered by a chain of XOR operatiocremplexity that vanishes with respect 3, the 3kp com-

with the aid of parity column®, Q, that can now be adjustedplexity of finding the syndrome vector dominates the decgdin
to P1, Q1 when all even columns are known. complexity whenk is of the same order gs.

e1 = [(‘Xu +af _‘_‘Xw_|_‘xu+v+‘xv+w) . (1 _‘_‘Xz;)} -1
. [0(20<(Xu+(xw)’ “u+2v+wl ot +“U+(Xw’ (XZU] . s

10

VII. RELIABILITY ANALYSIS OF THECODE IN STORAGE StateF (Fail) represents permanent data loss resulting from a
ARRAYS failure count that is above the array’s correction capgbili

.The exponential distributions allow specifying the trdiosis

The main motivation for the construction of array codes in : L
eneral, and the codes of this paper in particular, is toigeov etween ;tates n terms cmf;ttes The transmon_ ra_tg from
9 ' ' lower to higher states is the inver8¢T T F4evice Of individual

efficient protection for storage arrays against deviceaufas. : . . :
, . f . devices, times the number of devices in the array. The revers
The benefit of deploying an array code in a practical storage

system obviously lies in the trade-off it achieves betwe ansitions that represent repairs have rates that arewkeese

. TTRyevice @8SSumed in the system. Using the state diagram,
erasure correction capability and implementation cormiplex) ; s
. : " the MTTDL is the expected time to get from staid(initial
To this end, the correction capability of the new codes W%%ate) t0 staté® (data loss state)
characterized in detail in section V. The purpose of thisisac '
is to project this correction capability onto threliability MTTDL = E[0 — F]

domain, analyzing the storage array’s susceptibility ttada h K fih its the d .
loss, using a statistical framework. A common reIiabiIiI)T e Markov property of the process permits the decompasitio

metric for storage arrays is ttexpectedime before data loss, e . _ 1
denotedMTTDL (Mean Time To Data Loss) [6]. Ultimately, E[0 — F] = Eftime stays in 0] + E[1 — F| = nA +E[1 —F

this section will detail a procedure to calculate &' TDL | inear relationships betweeB[i — F] and E[j — F] are

of storage arrays, when protected by the new codes, in {j@yced whenever stateand statej are connected. For all-
presence of random and clustered device failures (ergsurgsgrasure correcting arrays (MDS-4), tAdTTDL is then

This will be done after first presenting the general method ghtained as the solution (f&#{0 — FJ) of the following linear
MTTDL calculation as applied in the literature to MDS COde§ystem.

under random erasures.
1 -1 0 0

0
S B S 0 E[0—F] 7

utn u+n E[1—>F] u+nA

A. MTTDL calculation for MDS codes under random era- 0 —m 1 g5 o ER—F | = | wim

A
sures 0 0 —x 1# - gi:g i
. . . 0 0 0 ——£ 1 1

Using the method presented in [6, Ch.5] for single-erasure- pEnA rE=)

correcting arrays under random erasures (terindépendent that is found to be

disk lifetimestherein), we calculate thé/TTDL of all-4- 1 . 5) o 3 .
erasure-correcting arrays as an example that is later wsed ¥/TTDLypss = F(SA +4ApA” +3u AT + 207 + %)
comparison with the new codes. The direct calculation of R _))

the MTTDL becomes a simpler task if device failures anhereA = nA is used for notational convenience.

repairs follow a Markov process and can thus be described

by a Markov state diagram. To allow that, the followindg3. MTTDL calculation for the new codes under random and

assumptions are made. clustered failures

« Device lifetimes follow an exponential distribution with For the model of random failures, thd TTDL of the new
equal meah MTTFjeyice = 1/A. codes can be calculated by a straightforward applicatidhef

o Repair times are also exponential with meamethod inthe previous sub-section — executed on the tiamsit
MTTRgevice = 1/ 1 diagram of Figure 7.

o The number of devices is large compared to the number AJ8
of tolerable failures, so the transition probabilities be-
tween states do not depend on the instantaneous number A A 7A/8

A
of failed devices. TN
When those assumptions are met, the reliability of a device
array can be described by the state diagram shown in Figure 6.
The label of each state represents the number of failed eevic K H H H

Figure 7. State diagram description of arrays protected with the new
codes, under random failures. Since the new codes corrcadh'8

nA nA nA nA
Y D ni ratio of 4-erasures, the failure rate out of statés split to7A /8 into
0 G @4@ state 4, as before, anti/8 directly into stateF.
H H H H

The corresponding linear system of equations on5tlaetive
states0, 1,2, 3,4 is now

OB

Figure 6. State diagram description of all-4-erasure correctingyarr

under random failures. The failure process with rafemoves to a 1 -1 0 0 0 X
higher failure state. The repair process with ratenoves to a lower a1 - 0 0 E[0—F] a
failure state. PR U E=Fl 1A
A FA ER2—F]| = | u3a
) . . 0 0 —H 1 —I.A E[3—F] 1
2MTTF stands for Mean Time To Failure and MTTR stands for MeameTl HtA u 8 A E[4—F] A
To Repair 0 0 0 —-Z= 1 ﬁ

11

The solution of that system gives

39Nt +35uA3 + 2602 A2 + 173 A + 8t
MTTDLnew,rand - 8/\5 T+ PL/\4
The exactMTTDL calculations are now used to compare the
reliability of the new codes to the reliabilities of all-4asure
and all-3-erasure correcting codes. For the comparigoig
fixed to be100/8760[wn, which applies e.g. to an array with ;
100 devices andMITT F4eyice = liYear. The MTTDL in hours
([hr]) is then calculated for repair rates between0.01{1/hr I m i o

and 10whA. The graph in Figure 8 shows that the new codes _ o
Figure9. State diagram description of the new codes under random

MTTDL and clustered failures. The rate failure process is now divided to
R et —-all-4 a clustered-failure ratg and random-failure rat€).

108 > e T . new
10' from all-isolated failures to a clustered failure combioat At
the upper branch, both random and additional clusterearé&sl
result in clustered failure combinations — and that accotort
the transitions marked., the total failure rate. From stafe a
clustered failure is undefined, hence the totality of thtufai
process moves to the same state 1.
1 whn Solving the8 x 8 linear system for the diagram in Figure 9
(expression omitted), th®ITTDL can be calculated in closed
Figure8. MTTDL curves under random failures for the new codedorm for all combinations ofy, A, u. The resultingMTTDL
for all-3-erasure and for all-4-erasure correcting cotlesler random curves for the new codes under three differgntvalues
failures, the new codes are order of magnitude better thbB-al 5p¢ plotted in Figure 10, and compared to tMTTDL
erasure correcting codes, and two orders of magnitudeidonfén of a 4-random failure code under the same conditions (4-
all-4-erasure correcting codes. . -
g random codes give the samdTTDL independent of the

outperform 3-random erasure codes by an order of magnituffdi© Petweeny andA). The curves of Figure 10 prove that as
despite having the same encoding complexity, the same elpo%{FSterEd f*”}"“fes become more ‘?'O'T‘!”a”t' the reliabilithe
complexity, and asymptotically the same decoding comfyexi "€V codes is approaching the reliability of a 4-random emsu

However, in the presence of pure random erasures, the n(‘e%recting code. This by itself is not a surprising result, the

codes are still two orders of magnitude worse than 4-randdth!lity to calculate the exact expected reliability for iarry
erasure-correcting codes x values is a useful tool for the deployment of the new codes

To compare the new codes and 4-random erasure codeér'ilrle""I storage systems.
the presence of both random and clustered failures, the stat
diagram of the new codes in Figure 7 needs to be modified to
include additional states that represent clustered fslurhe 101
state diagram of 4-random failure codes in Figure 6 remains
the same since this code is agnostic to the distinction iwe
random and clustered failures. To take clustered failunes i
account in the Markov failure model, we add the following
assumptions to those of the previous sub-section.

« Times to clustered failures (failures that are adjacentto a
unrepaired previous failure) are exponentially distrdolit 10"
with mean1/x. Times to random failures (failures that
are not clustered) are exponentially distributed with mean
1/Q. The two rates sum to the total failure rate as in the
random-only caseA = x + Q. 2 4 6 8

¢ The expor_lentlally-dIstrlbuted repar process el'm'nat%?gure 10. MTTDL curves under random and clustered failures for
isolated failures before clustered ones. the new codes and for all-4-erasure correcting code. Feethalues
With these assumptions, the state diagram of arrays peatectf x, the MTTDL of the new codes is shown by the solid curves.
with the new codes under random and clustered failuresTige MTTDL of an all-4-erasure correcting code is the same for all
given in Figure 9. State&’,3’ and 4’ in the upper branch values ofx.
represent2, 3 and 4 clustered (not all-isolated) failures,
respectively. The transitions marked withrepresent moving

108

10

2 4 6 8

LL [L/hr]

12

VIIl. CODE EVALUATION AND COMPARISON WITH encoding and decoding operations are performed over the
EXISTING SCHEMES binary alphabet, using simple eXclusive OR operations. An

We compare the new codes to EVENODD (4) example of an array code with two parity columns that can

codes using various performance criteria. For correctibn ECOVer from any two column erasures is given below. The
4-erasures, the EVENODD (= 4) is the best known code. SI9nS represent binary eXclusive OR operations. The thafte |

The comparison results are first summarized in Table 1. TR!UMNS contain pure information and the two right columns
erasure-correction properties in Table I apply to any pr-p,necontaln parity bits that are computed from the informatids b

such that is primitive in GRp). as specified in the chart below.

a|blcla+b+c|a+f+e+c

New codes| 4-EVENODD

Code Length (up to) 2p P die|fldt+et+fld+btetc
Redundancy 4 4 . .) . . .
Encoding Complexity 3kp akp Like encoding, decoding is also performed using simple
Decoding Complexity 3kp 4kp eXclusive OR operations. For example, recovering the bits
Update Complexity 5 7 a,b,d, e at the two leftmost columns is done by the following
Clustered Erasures ~ All All . .
Random Erasures 778 Al chain of computations.

TABLE | _
COMPARISON BETWEEN THE NEW CODES ANBEVENODD CODES e = ¢+ (a+b+c) + (d+e+f) + (a+f+e+c)
+ (d+b+e+c)

] e+f+(d+e+f)
The redundancy is 4 for both codes. The new codes can

support up t@2p information columns while EVENODD can = ctftret(atfteto)
only have up top. Since parity columnsR0 and S1 each b = c+a+(a+b+c)
depend on half of the information columns, the encodi
complexity of the new codes i8kp, compared to4kp in
EVENODD. In both cases, whek is of the same order
of p, the decoding complexity is dominated by syndrom
calculations (for the new codes this has been shown
section VI). Therefore, similarly to the encoding case,ribes

r‘\igis left as an exercise to verify that any two column erasure
can be recovered by the code above. The small-write update
%omplexity (the qualifiesmall-write is often omitted) of an

ray code is the number of parity-bit updates required for
a single information-bit update, averaged over all theyarra

codes need abodikp bit operations to decode, compared té)nformation bits. In the sample code above, each of the bits
4kp for EVENODD. As for the update—compléxity, the new” b, d, f requires2 parity-bit updates, and each gfc requires

codes are significantly more efficient. Their small-writelafe 3 pa”.ty'b't updates. The update complexity of that sample
complexity is5. Each of the2p(p — 1) updated information code is hence4-2+2-3)/6 = 2.333.

bits needs3 parity updatesP, Q, RO for bits in even columns

and P,Q, S1 for bits in odd columns. Thet(p — 1) bits REEERENCES

that belong toEO diagonals Z(p —1) in Q andp — 1 in _ _

each of R0, S1) require additionalp — 1 parity-bit updates ™ ';‘g%?i?ﬁ;'sHoggﬁhgniﬂjA' Ld'gfﬁgﬁiggﬁ'_gwneirfgyarllgg'j's of computer
each for adjusting even/odd parities. The small-write t@da [2] L. Bahl and R. Chien, “Multiple-burst-error coryrectiohy threshold

complexity of the new code is then obtained by averaging decoding,”Information and Contrglvol. 15, no. 5, pp. 397-406, 1969.
[3] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: afiaént
6P(P — 1) + 4(P — 1)2 scheme for tolerating double disk failures in RAID architees,” IEEE

5 1 =5-0(1) Transactions on Computersol. 44, no. 2, pp. 192—202, 1995.
p(p—1) [4] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with mkndent
Recall that EVENODD has small-write update-complexity Eimzy ;{)mé’g'gs_’;ffﬁgggnsac“"”s on Information Theoryol. 42,
of 2r —1 —o0(1) = 7 —o(1). The full-column update- (5] M. Blaum and R. Roth, “New array codes for multiple phasedst
complexity of the new code & while EVENODD’s is4. Thus correction,” IEEE Transactions on Information Theoryol. 39, no. 1,
plexity

o/ i H pp. 66—77, 1993.
the new code offers @8.57% improvement in the average [6] G. Gibson,Redundant Disk Arrays Cambridge MA, USA: MIT Press,

number of small-writes an@5% improvement in the number 1992.

of full-column updates. The fraction of clustered erasure§] C. Huang, M. Chen, and J. Li, “Pyramid codes: flexible sobs to
; ; trade space for access efficiency in reliable data storageersg,” in

correctable by,the neV_/ codeslis- 0(1)’ essentla”.y the Sam.e. Proceedings of the Sixth |IEEE International Symposium otwblé

as EVENODD's. Only in random erasure-correction capabilit computing and Applications<Cambridge, MA USA, 2007.

are the new codes inferior to EVENODD codes: the fractiori8] C. Huang and L. Xu, “STAR: An efficient coding scheme forrexting

of correctable random erasures7i¢8 — o(1) compared tol triple storage node failures,” iRroceedings of the 4th USENIX Confer-
,é8 () P ence on File and Storage Technologi&an-Francisco CA, 2005.
for EVENODD. [9] S. Lin and D. Costello,Error Control Coding: Fundamentals and

Applications Prentice-Hall, Englewood Cliffs, NJ, 1983.
[10] F. MacWilliams and N. Sloanélhe Theory of Error-Correcting Codes
APPENDIXA Amsterdam, The Netherlands: North Holland, 1977.
ARRAY CODES INTRODUCTORY EXAMPLE [11] J. Paris and A. Amer, “Using shared parity disks to inverdhe relia-
. bility of RAID arrays,” in Proc. of the 28th International Performance
The idea behind array codes is that the code is defined of Computers and Communication Conference (IPCCC 20@Bpenix,

on two-dimensional arrays of bits (or groups of bits), and Az, Dec. 2009.

[12]

[13]

J. Paris and D. Long, “Using device diversity to proteletta against
batch-correlated disk failures,” iRroc. of the 2nd International Work-
shop on Storage Security and Survivability (StorageSS)20U6xan-
dria, VA, Oct. 2006.

D. A. Patterson, G. A. Gibson, and R. Katz, “A case forurdant arrays
of inexpensive disks,” ifProc. SIGMOD Int. Conf. Data Management
1988, pp. 109-116.

13

