
1

Low-Complexity Array Codes for Random and
Clustered 4-Erasures

Yuval Cassuto,Member, IEEE,and Jehoshua Bruck,Fellow, IEEE

Abstract—A new family of low-complexity array codes
is proposed for correcting 4 column erasures. The new
codes are tailored for the new error model of clustered
column erasures that captures the properties of high-
order failure combinations in storage arrays. The model of
clustered column erasures considers the number of erased
columns, together with the number of clusters into which
they fall, without pre-defining the sizes of the clusters.
This model addresses the problem of correlated device
failures in storage arrays, whereby each failure event
may affect multiple devices in a single cluster. The new
codes correct essentially all combinations of clustered4
erasures, i.e. those combinations that fall into three or less
clusters. The new codes are significantly more efficient, in
all relevant complexity measures, than the best known4-
erasure correcting codes. These measures include encoding
complexity, decoding complexity and update complexity.

Index Terms—Array codes, clustered erasures, correlated fail-
ures, storage arrays

I. I NTRODUCTION

A RRAY codes have long become a pivotal tool for pro-
tecting data reliability and availability in multi-device

storage systems. Initially, only trivial codes were used: the
repetition code in RAID-1 arrays, and the parity code in
RAID-5 arrays1. With the scaling of device capacities, demand
had grown for higher failure protection, using redundancy-
efficient schemes. Consequently, 2-erasure correcting array
codes are being deployed in RAID-6 storage arrays. But
even this increased erasure correction capability was shown
to be insufficient against failure clustering, which results from
correlated failure events [12]. That issue of clustered high-
order failures due to rare catastrophic events motivates the
construction of array codes that specifically target clustered
erasures. Such codes become an attractive option if they are
able to alleviate the high implementation complexity of generic
high-order erasure-correcting codes. The main implementation
bottlenecks of high-order array codes are their encoding and
decoding complexities – and more dominantly – their update
complexity. A high complexity of updates means that writes
to the array are slowed down due to the need to update many

Yuval Cassuto is with Hitachi Global Storage Technologies,
3403 Yerba Buena Rd., San Jose, CA 95135, U.S.A. (e-mail:
yuval.cassuto@hitachigst.com).

Jehoshua Bruck is with the Department of Electrical Engineering, California
Institute of Technology, 1200 E California Blvd., Mail Code136-93, Pasadena,
CA 91125, U.S.A. (e-mail: bruck@paradise.caltech.edu).

This work was supported in part by the Caltech Lee Center for Advanced
Networking.

1The acronym RAID stands for Redundant Array of Inexpensive Disks [13]

parity bits. In addition to its toll on performance, a high update
complexity increases device wear and shrinks device lifetimes.

Looking on the clustered-failure problem from a coding-
theoretic perspective, combating a failure channel that isnot
memoryless requires the departure from common constructs
like t erasure-correcting codesand concepts like theHamming
distance. These only consider the number of erasures within
a code block, and not their relative locations. To capture the
failure-clustering phenomenon in a coding-theoretic setting, a
precise model definition of clustered erasures is needed. The
clustering model proposed in section II classifies erasure com-
binations by the number of erased columns, andby the number
of clustersin which the erased columns fall. The number of
clusters captures the number of “independent” failure events,
each possibly affecting multiple devices in a single cluster
of contiguous devices. An example of this characterizationof
erasure patterns is given in Figure 1 for patterns withρ = 4
erasures. The present erasure characterization is different (and

(a)

(b)

(c)

(d)

Figure 1. Classification of column combinations by their respective
numbers of clusters. Four columns (marked with X) that fall into
(a) One cluster (b) Two clusters (c) Three clusters (d) Four clusters
(non-clustered)

stronger) from the multiple-burst erasure model [2], as it does
not predefine the clustersizes, only theirnumber. For example,
an erasure model that requires correctingρ = 4 erasures in

2

up to 2 clusters covers the single erasure burst in (a), and the
two possible patternsof two clusters in (b) of Figure 1.

This problem of clustered erasures is addressed in this paper
for the case of4 erasures. The main contribution is a strongly-
systematic array-code family that corrects all4-erasures in up
to two clusters, and all but a vanishing number of4-erasures
falling into three clusters. The new code family enjoys a signif-
icant reduction in complexity compared to the best known4-
erasure array codes. The encoding and decoding complexities
are each reduced by25%, and the update complexity is slashed
by 28.57%. That improvement in implementation efficiency
comes at the price of degradedrandom-erasure correctability,
although 7/8 of the totality of4-erasure combinations are still
correctable.

There have been prior attempts to improve the imple-
mentation efficiency of array codes by departing from the
requirement to correct all possible4-erasures [7], [11]. How-
ever, these attempts used “black-box” compositions of known
codes, which result in poor clustered and random erasure
correctability, compared to the results of this paper. The unique
property achieved by the new code construction is that it can
correct erasure combinations inboth2-even + 2-odd columns,
and 3-even + 1-odd columns (and the complement 3-odd +
1-even). The 2+2 case alone can be achieved by a standard
interleaving of 2-erasure codes, and the 3+1 case alone is
corrected by splitting a parity group of a 3-erasure code [7].
To get clustered-erasure correctability, both the 2+2 and 3+1
combinations are required, hence lies the novelty of this paper.

Various aspects of the new code family are studied in the
paper. In section IV, the code construction is specified in
both geometric and algebraic forms. With clarity in mind,
the construction method is presented in two steps: first (sub-
section IV-A) the code is specified in a structured form, and
then (sub-section IV-B) the column placement is permuted
to obtain the final code that enjoys better clustered-erasure
correction capability. The code’s erasure correction capability
is proved in section V. Efficient decoding is described in
section VI, and the reliability of arrays that employ the new
code is analyzed in section VII, using a Markov probability
model. A summarizing comparison between the new code and
the best known4-erasure array code concludes the presentation
in section VIII.

II. D EFINITIONS AND NOTATIONS

A. Array codes

The definitions in this sub-section are standard in the area
of array codes. The next sub-section presents new notation,
specifically for clustered-erasure correction. Alengthn array
code consists ofn columns. When array codes are used in
storage arrays, a column is a model for a physical device or
another physical unit of data. In the codes discussed here,
there arek columns that store uncoded information bits and
r columns that store redundant parity bits (thusn = k + r).
This array structure has the advantage that information canbe
read off a device directly without decoding, unless it suffered a
failure, in which case a decoding process is invoked. An array
code that admits this structure is calledstrongly systematic.

A column erasureoccurs when, for some physical reason, the
contents of a particular column cannot be used by the decoder.
An erasure is a model for a device failure whereby all the data
on the device (or other physical unit) is known to have become
unusable. We say that an array with given column erasures
is correctableby the array code if there exists a decoding
algorithm that, independent of the specific array contents,can
reconstruct the original array from unerased columns only.An
array code is called MDS (Maximum Distance Separable) if
it has r redundant columns and it can correct all possible
combinations ofr column erasures. MDS codes obviously
have the strongest conceivable erasure correction capability
for a given redundancy, since thek information columns can
be recovered fromany k columns. Beyond space efficiency
of the code, one should also consider its I/O efficiency. I/O
efficiency of a storage array is determined by thesmall-write
and full-column update complexities of the array code used.
The small-write update complexity (often simply called update
complexity) is defined as the number of parity-bit updates
required for a single information bit update, averaged over
all information bits. Appendix A shows how the small-write
update complexity is calculated for a sample array code.
The full-column update complexity is the number of parity
columns that have to be modified per a single full-column
update. Another crucial performance measure of an array code
is its erasure-decoding complexity, defined as the number of
bit operations (additions, shifts) required to recover theerased
columns from the surviving ones.

B. Random/Clustered erasure correction

To describe column-erasure combinations whose only re-
striction is the number of erased columns, it is customary to
use the somewhat misleading termrandom[9] erasures.

Definition 1. An array is said to recover fromρ random
erasuresif it can correct all combinations ofρ erased columns.

The random erasure model is most natural when storage
nodes are known to, or more commonly, assumed to behave
uniformly and independent of each other. Indeed, almost all
array-code constructions discussed in the literature aim at
correcting random erasures. Refinement of the erasure modelis
possible by adding restrictions on the relative locations of the
erased columns. This paper considersclusterederasures, where
theρ erasures fall into a limited (< ρ) number of clusters. We
now turn to some definitions related to the clustered-erasure
model. In words, acluster is a contiguous block of columns.
More precisely,

Definition 2. In an array code with columns numbered
{0, 1, 2, . . . , n− 1}, a cluster is a set ofσ columns such that
the difference between the highest numbered column and the
lowest numbered one is exactlyσ − 1.

For example,{2, 3, 4, 5} is a cluster withσ = 4. Now given
a set of columns, the number of clusters that it occupies is the
partition of that set to a minimal number of subsets, each of
which is a cluster according to the definition above. Now we
include another definition that will be useful later.

3

Definition 3. A set of ρ columns is calledclustered if the
number of clusters it occupies isstrictly less thanρ.

Random erasures have no restriction on their respective num-
bers of clusters and therefore they include both clustered
and non-clustered erasures. The other extreme is thecolumn
burst model, where all erased columns need to fall into a
single cluster. These two well-studied extreme cases open our
presentation, and later the new codes are shown to be very
effective for all intermediate cases of clustered erasures.

III. PRELIMINARIES AND RELEVANT KNOWN RESULTS

The purpose of this section is to discuss relevant known
results in sufficient detail to prepare for the presentationof
the new code family in the next section. It also presents the
mathematical framework that is used to prove the new code’s
correction properties.

A. Codes for erasures in a single cluster

Assume that our design goal is an array that will sustain
any erasure ofρ columns in a single cluster, without requiring
any random-erasure correction capability. A simple and well
known technique calledinterleaving can achieve that task
optimally both with respect to the required redundancy and
in terms of the code update complexity.

Let CP be an array code withn′ columns, out of which
k′ = n′ − 1 are information columns. The remaining column
holds the bit-wise parity of thek′ information columns.
Define the codeCPρ as the lengthn = ρn′ code that is
obtained by the interleaving ofρ codewords ofCP . In other
words, ifC(1),C(2), . . . ,C(ρ) areρ codewords ofCP , then the
corresponding code word ofCPρ will be

C
(1)
1

· · · C
(ρ)
1 C

(1)
2

· · · C
(ρ)
2 C

(1)
3

· · ·

Proposition 4. The codeCPρ corrects anyρ erasures in a
single cluster.

Proof: Any erasure that is confined to at mostρ consec-
utive columns erases at most one column of each constituent
CP code. These single erasures are correctable by the indi-
vidual CP codes.
It is clear that the codeCPρ has optimal redundancy since it
satisfiesρ = r andρ is a well known and obvious lower bound
on the redundancyr. For anyρ, the codeCPρ has update
complexity (both small-write and full-column) of1, which is
optimal since a lower update complexity would imply at least
one code bit that is independent of all other bits, and erasure
of that bit would not be correctable.

B. Codes for random erasures: EVENODD

At the other extreme of the erasure-clustering classification
are codes that correct anyρ random erasures. For the special
case ofρ = 4, which is the case addressed in the current paper,
the best known random-erasure correcting codes, in terms
of implementation complexity, is the family of generalized
EVENODD codes [4]. The generalized (r = 4) EVENODD
codes are defined over arrays with dimensions(p − 1) ×

(p + 4), with p information columns and4 parity columns.
Discussing generalized EVENODD in depth is beyond the
scope of this paper, so we only mention their key properties
that are relevant to the current presentation.

• Whenp is a prime such that2 is a primitive element in the
Galois Field GF(p), they correct any random 4-erasure
(hence they are MDS codes for these parameters).

• Their asymptotic small-write update-complexity is7 −
o(1). o(1) refers to terms that tend to zero as the
code length goes to infinity. Their full-column update-
complexity is4.

• The best known way to decode them is using the algo-
rithm of [5] over the polynomial ringRp (to be defined
later), for which the decoding complexity is dominated
by the term4kp.

As the state-of-the-art in correcting 4-erasures, the generalized
(r = 4) EVENODD codes are used as comparison to the new
codes constructed herein.

C. Mathematical framework

We now describe the mathematical framework, borrowed
from Blaum-Roth [5], to present the new codes. The length
p− 1 columns of the code array are viewed as polynomials
of degree6 p− 2 over the finite fieldF2, taken modulo the
polynomial Mp(x), where Mp(x) = (xp + 1)/(x + 1) =
xp−1 + xp−2 + · · ·+ x + 1 (recall that inF2 summation and
subtraction are the same and both done using the Boolean eX-
clusive OR function). According to that view, the polynomial
for a binary column vectorc = [c0, . . . , cp−2]

T is denoted
c(α) = c0 + c1α+ · · ·+ cp−2α

p−2. Bit-wise addition modulo
2 of two columns is equivalent to summing the correspond-
ing polynomials in the ring of polynomials moduloMp(x),
denotedRp. Multiplying c(α) by α results in a downward
shift of c if cp−2 is zero. In the casecp−2 = 1, multiplying
by α requires reduction moduloMp(x), and thusαc(α) is
obtained by first downward shifting[c0, . . . , cp−3, 0]

T, and
then inverting all the bits of the shifted vector. The ringRp

allows an algebraic representation of codes whose encoding
rules comprise column bit-wise additions (ring addition) and
column shift-and-invert operations (ring multiplication).

Throughout the paper, we assume that the prime number
p is chosen such that 2 is a primitive element in GF(p),
hence Mp(x) is irreducible, and the ringRp becomes a
finite field[10, p.197]. The correctability of erasure patterns is
proved by showing that the determinant of sub-matrices of the
code parity-check matrix are non-zero in the fieldRp (note
that the fieldRp is really GF(2p−1), with a specific mapping
from lengthp− 1 vectors to field elements).

IV. CODE CONSTRUCTION

Referring to Figure 2, the proposed code family has2p
information columns (white) ofp− 1 bits each, and4 parity
columns (shaded) with the same number of bits. With clarity
in mind, we present the new code family in two steps. The
first step, included in sub-section IV-A, orders the information
columns in a way that reveals their structure. Then, in sub-
section IV-B, the order of the information columns is permuted
to achieve better clustered-erasure correction.

4

P S1 QR0

Figure 2. The proposed code array with2p information columns and
4 parity columns. The column size isp− 1.

A. The structured definition of the code

The information columns are numbered in ascending order
from left to right using the integers{0, 1, 2, . . . , 2p − 1}.
Parity columns are not numbered and we use letter labels
for them: {P, S1, R0,Q}. Each of thep− 1 bits in a parity
column is computed from the bit content of its parity group.
The structure of the parity groups is now explained via a
graphical illustration, for the example ofp = 5. For each
of the four parity columns depicted in the four arrays in
Figure 3, array locations with the same shape indicate that they
belong to the same parity group. Similarly to the EVENODD
code [3], parity groups are constrained by the code to have
either even or odd parity, depending on the instantaneous
array contents, as will be specified shortly. Parity column
P, located at the left most column, is simply the bit-wise
even parity of the2p information columns. Parity columnS1,
located second from left, is the slope−1 diagonal parity of
the odd numbered information columns{1, 3, . . . , 2p − 1}.
The bit groups ofS1 are set to have even parity if the bits
markedEO have even parity, and odd parity otherwise. Parity
columnQ, located at the right most column, is the XOR of the
slope1 diagonal parities of both the even numbered columns
and the odd numbered columns. Parity columnR0, located
second from right, is the slope2 diagonal parity of theeven
numbered information columns{0, 2, . . . , 2p− 2}. The parity
groups ofQ and R0, similarly to those ofS1, are set to be
even/odd, based on the parity of the correspondingEO groups.
Note that parity columnsP and Q can be decomposed into
P = P0⊕ P1 andQ = Q0⊕Q1, respectively, whereP0,Q0
depend only on even information columns andP1,Q1 only on
odd ones. An important fact that will be used in subsequent
sections is that even information columns with the parity
bits of P0,Q0, R0 constitute anr = 3 MDS code [4], and
odd information columns with the parity bits ofP1,Q1, S1
constitute a (different)r = 3 MDS code [8].

For a formal definition of the code we include the explicit
encoding functions. Denote byci,t the bit in rowi of informa-
tion columnt. For an integerl, define〈l〉 to be l mod p. The
formulas to compute theith bit of each of the parity columns
P,Q, R0, S1 are provided in Figure 4.

The encoding of information bits into a code array is
illustrated in the example of Figure 5.
Algebraic description
An equivalent description of the parity constraints of Figure 4
is the code’s parity-check matrix overRp, which appears in

P

S1

EO

EO

EO

EO

Q

EO

EOEO

EOEO

EOEO

EO

R0

EO

EO

EO

EO

Figure 3. Parity groups forp = 5. From top to bottom: the parity
groups of parity columnP (slope 0),S1 (slope -1),Q (slope 1) and
R0 (slope 2). Parity columnsR0 and S1 each depend on only half
of the columns, contributing to the low implementation complexity
of the code.

the following for the casep = 5.






1 0 1 1 1 1 1 1 1 1 1 1 0 0
0 1 0 1 0 α4 0 α3 0 α2 0 α 0 0
0 0 1 0 α2 0 α4 0 α 0 α3 0 1 0
0 0 1 1 α α α2 α2 α3 α3 α4 α4 0 1







The correspondence between the parity groups depicted in
Figure 3 and the parity-check matrix above is as follows.
The columns of the parity-check matrix correspond to columns
of the code array. The two left most columns are for parity
columnsP and S1, and the two right most columns are for
R0 and Q. Columns in between correspond to information
columns in the array. In the parity-check matrix, row1
represents the constraints enforced by parity columnP, rows
2, 3, 4 similarly represent the parity constraints ofS1, R0,Q,
respectively. In any rowi, the difference of exponents ofα in
two different columns is exactly the relative vertical shift of the
two columns in the shape layout of the appropriate parity in
Figure 3. For example, in the top row, all information columns
have the same element,1(= α0), to account for the identical

5

Pi =
2p−1
⊕

j=0

ci, j

S1i = EO1 ⊕
p−1
⊕

j=0

c〈i+ j〉,2 j+1 ,

where EO1 =
p−1
⊕

j=0

c〈p−1+ j〉,2 j+1

R0i = EO0 ⊕
p−1
⊕

j=0

c〈i−2 j〉,2 j ,

where EO0 =
p−1
⊕

j=0

c〈p−1−2 j〉,2 j

Qi = EOQ ⊕ (
p−1
⊕

j=0

c〈i− j〉,2 j) ⊕ (
p−1
⊕

j=0

c〈i− j〉,2 j+1) ,

where EOQ = (
p−1
⊕

j=0

c〈p−1− j〉,2 j) ⊕ (
p−1
⊕

j=0

c〈p−1− j〉,2 j+1)

Figure 4. Explicit specification of parity constraints.

vertical alignment of the shapes in the encoding rule of parity
P. For generalp the parity check matrixH has the following
form.

H =







1 0 1 1 · · · 1 1 1 1 · · · 1 0 0

0 1 0 1 · · · 0 α− j 0 α−(j+1) · · · α 0 0

0 0 1 0 · · · α2 j 0 α2(j+1) 0 · · · 0 1 0

0 0 1 1 · · · α j α j α j+1 α j+1 · · · αp−1 0 1







(1)

B. The permuted definition of the code

In the previous sub-section, the layout of information
columns with respect to the parity groups was done in an order
that reveals the code’s structure. Nevertheless, it turns out that
using this structured order for the actual layout of columns
in the array does not provide the optimal clustered-erasure
correctability. In this sub-section we specify a mapping from
the information-column numbers in the structured definition to
information column numbers in the actual code specification,
which is later called thepermuted code. This mapping is given
as a permutationψ on the set{0, . . . , 2p− 1}.

ψ(t) = (2t) mod (2p) + t mod 2, t∈ {0, . . . , 2p− 1}.

Proposition 5.ψ is a permutation on{0, . . . , 2p− 1}.

Proof: It is first observed that0 6 ψ(t) < 2p, because
there is no indext with (2t) mod (2p) = 2p− 1. Now if ψ is
not a permutation, then there exist distinct indicest, l such that
(2t) mod (2p) + t mod 2 = (2l) mod (2p) + l mod 2.
Case 1:Both t, l are odd or both are even, and assume without
loss of generalityt < l. Then (2t) mod (2p) = (2l) mod
(2p). And consequently2l = 2t + 2p, and in turnl = t +

P

S1

R0

Q

0

0

0 0

00

0 0 0

00

0

0

0 0 0 0

000000

0 0 0 0 0

00000

0

0

0 0

0000

0 0

000

0

0

0 0 0 0

000000

0 0 0 0 0

00000

1

1

1 1 1

111

1 1

111

1

1

1 1 1 1 1 1

1111

1 1 1 1 1

11111

1

1

1

1 1

1

1 1 1

11

1

1

1 1 1 1 1 1

1111

1 1 1 1 1

11111

(a)

(b)

(c)

(d)

Figure 5. Encoding example. Each parity group from Figure 3 is
shown here traversed by a dotted line. (a) Parity columnP (always
even parity) (b) The groups of parity columnS1 have odd parity since
the non-traversed (EO) bit group has an odd number of ones. (c) The
groups of parity columnQ have even parity since the non-traversed
bit group (EO) has an even number of ones. (d) The groups of parity
column R0 have odd parity since the non-traversed bit group (EO)
has an odd number of ones.

p. Since p is odd, the last equation is a contradiction to the
assumption that both have the same parity.
Case 2:Without loss of generalityt is even andl is odd. Then
(2t) mod (2p) = (2l) mod (2p) + 1. This is a contradiction
since the left hand side is even while the right hand side is
odd.

The permutationψ has the following important properties.

Property 1: ψ(t) ≡ t (mod 2) (odd indices are mapped
to odd indices and even indices are mapped to even indices).

6

Property 2: A pair of indices2 j and 2 j + p are mapped to
a pair of adjacent indices2l and2l± 1.

The inverse permutationψ−1 is defined next.

Proposition 6.The inverse permutation ofψ is

ψ−1(s) =
⌊ s

2

⌋

+ p

(⌈
s mod 4

2

⌉

mod 2

)

Proof: We first observe that fors∈ {0, . . . , 2p− 1}, the
expression forψ−1(s) satisfies0 6 ψ−1(s) < 2p, since
⌊s/2⌋ < p. Now we write the expression forψ(ψ−1(s)).

ψ(ψ−1(s)) = (2ψ−1(s)) mod (2p) +ψ−1(s) mod 2

= 2
⌊ s

2

⌋

+ψ−1(s) mod 2 (2)

= s− s mod 2+ψ−1(s) mod 2

= s− s mod 2+ s mod 2 (3)

= s

(2) is because2p · x ≡ 0 (mod 2p) for any x. (3) is from
the fact thatψ−1(s) ≡ s (mod 2), which can be verified by
evaluatingψ−1(s) for all four different modulo-4 values ofs.

The permuted code is now defined usingψ: at columnt of
the permuted code the columnψ(t) of the structured code is
placed (said another way, columns of the structured code is
placed at columnψ−1(s) of the permuted code). This results
in the parity-check matrix of the permuted code to be

H′ =







1 0 1 1 1 · · · 1 1 1 1 · · · 1 0 0
0 1 0 α−1 0 · · · 0 1 0 α−2 · · · α 0 0
0 0 1 0 α4 · · · αp−2 0 α2 0 · · · 0 1 0
0 0 1 α α2 · · · αp−1 1 α α2 · · · αp−1 0 1







(4)
From property 2 above, the bottom row has changed
from [1, 1,α,α, . . . ,αp−1,αp−1] in H (equation (1)) to
[1,α, . . . ,αp−1, 1,α, . . . ,αp−1] in H′ (equation (4)). This
modified order will be shown in the next section to eliminate
uncorrectable erasure combinations with2 or 3 clusters.

V. ERASURE CORRECTABILITY OF THE PERMUTED CODES

In this section we prove that the permuted code specified
in the previous section can correct all4-erasures falling into
two or less clusters, as well as all but a vanishing number of
4-erasures falling into three clusters. Hence the proposed code
family can correct essentially all clustered erasures. Moreover,
considering random-erasure correctability, we prove thata 7/8
portion of all combinations of4 erasures are correctable by
the code.

A. Correction lemmas

We start by a sequence of lemmas that will be used in the
next sub-sections to prove the clustered and random erasure
correctability of the codes. Recall that the2p+ 4 columns of
the code are labeled{P, S1, 0, 1, . . . , 2p− 2, 2p− 1, R0,Q}.
Note that Lemma 7 and Lemma 8 are agnostic to whether
the structured or the permuted code is used, thanks to the

property that even information columns in the structured code
are mapped to even information columns in the permuted
code, and odd information columns in the structured code
are mapped to odd information columns in the permuted code
(Property 1 in sub-section IV-B). On the other hand, Lemma 9
specifically refers to the structured code, since it specifies
column indices beyond their even/odd property.

The first lemma uses reduction tor = 3 codes for 3 even
+ 1 odd or 3 odd + 1 even erasure combinations.

Lemma 7. For a combination of4 erasures, if3 columns are
either even numbered information columns or parity columns
in {R0, P,Q}, and1 column is an odd numbered information
column or the parity columnS1, then it is a correctable4-
erasure. The complement case:3 odd (or S1 or P or Q)
and1 even (orR0), is correctable as well. (in particular, any
combination of 3 erasures is correctable).

Proof: The code can correct the erasure combinations
under consideration using a two-step procedure, describedfor
the 3 even + 1 odd case (the complement case is the same,
up to changing the identities of parity columns). The first step
is to recover the single erased odd information column. Since
only one odd column is erased, parity columnS1 can be used
to recover all of its bits. Then, when all odd columns are
available,P1 andQ1 are computed and used to findP0 and
Q0 from P andQ (if not erased) by

P0 = P1⊕ P , Q0 = Q1⊕Q

After that step, between even information columns andR0,
P0 andQ0, only 3 columns are missing. Since even columns,
R0, P0 andQ0 constitute an EVENODD code withr = 3, the
3 missing columns can be recovered. The complement case of
3 odd and1 even column erasures is settled by the fact that
odd columns withS1, P1 andQ1 constitute anr = 3 MDS
code [8].
To get clustered erasure correction, the code should also
correct 2 even + 2 odd erasure combinations.

Lemma 8. When p > 5, for a combination of4 erasures,
if 2 columns are even numbered information columns and2
columns are odd numbered information columns, then it is a
correctable4-erasure.

Proof: For the case of2 even and2 odd information-
column erasures we write in (5) the corresponding sub-matrix
M of the parity-check matrixH in a general form.

M(j,l,m) =







1 1 1 1

0 0 α−l α−m

1 α2 j 0 0

1 α j αl αm







(5)

To prove the correctability of the erasure patterns, the
determinant ofM needs to be non-zero for all combinations
of j, l,m that satisfy

0 6 l < m 6 p− 1, 0 < j 6 p− 1

Note that assuming that the left most column is column 0 does
not limit generality, since any column combination withoutthe
0 column has the same determinant as a combination with the

7

0 column, up to a multiplication by a non-zero constant in
Rp. This fact is proved by observing that shifting the column
combination such that one of the even columns is the 0 column
is equivalent to multiplying each of rows 2-4 by non-zero
constants.
Evaluating the determinant ofM(j,l,m) gives

∣
∣
∣M(j,l,m)

∣
∣
∣ = α2 j−l+m +α2 j+l−m +α−l+m +αl−m

+ α j−m +α2 j−m +α j−l +α2 j−l

= (α j + 1)(α−l+m + 1) ·

·(α j +α j+l−m +αl−m +α j−m + 1)

Since j > 0 andm > l, the first two terms in the product are
non-zero. The last term has an odd number of monomials, and
therefore cannot be 0. Forp > 5 it also cannot equalMp(α),
the modulus of the fieldRp.

The next lemma treats additional erasure combinations that
include parity columns and that are not covered by Lemma 7.

Lemma 9. If p > 3, the following 4-erasure combinations are
correctable by the structured code.

1) S1, 1 odd information column and2 even information
columns

2) R0, 1 even information column and2 odd information
columns

3) R0,S1, 1 even information column and1 odd information
column, except pairs of information columns numbered
2i, 2i + 1, for 0 6 i 6 p− 1.

Proof: The sub-matrix that corresponds to case 1 is

M
(j,l)
1 =







0 1 1 1

1 0 0 α−l

0 1 α2 j 0

0 1 α j αl







The variablesj, l satisfy the conditions

0 6 l 6 p− 1, 0 < j 6 p− 1

Evaluating the determinant ofM1 gives
∣
∣
∣M

(j,l)
1

∣
∣
∣ = (α j + 1)(α j+l +α j +αl)

Since j > 0, the first term is non-zero. The second term has
an odd number of monomials and therefore cannot be 0. For
p > 3 it also cannot equalMp(α).

The sub-matrix that corresponds to case 2 is

M
(l,m)
2 =







1 1 1 0

0 α−l α−m 0
1 0 0 1

1 αl αm 0







The variablesl,m satisfy the conditions

0 6 l < m 6 p− 1

The determinant now equals
∣
∣
∣M

(l,m)
2

∣
∣
∣ = (α−l +α−m)(αl +αm + 1)

Sincem > l, the first term is non-zero. The second term has
an odd number of monomials and therefore cannot be 0. For
p > 3 it also cannot equalMp(α).

The sub-matrix that corresponds to case 3 is

M
(l)
3 =







0 1 1 0

1 0 α−l 0
0 1 0 1

0 1 αl 0







The variablel satisfies the conditions

0 6 l 6 p− 1

The determinant now equals
∣
∣
∣M

(l)
3

∣
∣
∣ = αl + 1

The determinant above is non-zero ifl > 0, a condition that
is equivalent to requiring that the even and odd information
columns are not numbered2i, 2i+ 1, respectively, for0 6 i 6
p− 1.

B. Clustered erasure correctability

Finally, we are ready to prove the main results of the paper.
The structured codes are next shown to correct all 4-erasures
in up to two clusters, and asymptotically all 4-erasures in three
clusters.

Theorem 10. For p > 5, the permuted code corrects all 4-
erasures that fall into at most two clusters.

Proof: If a 4-erasure falls into two or less clusters, then it
either has3 even and1 odd columns (or the complement) or
2 even and2 odd columns. If all columns are information
columns, the 3+1 case is covered by Lemma 7, and the
2+2 case (forp > 5) by Lemma 8. If P or Q (or both)
are erased, then the remaining columns can be neither all
odd (or S1) nor all even (orR0), cases which are covered
by Lemma 7 as well. The case of only one ofS1 and R0
erased is covered by cases 1 and 2 of Lemma 9, respectively.
Finally, 4-erasures with bothS1 and R0 erased that are
not covered by case 3 of Lemma 9 cannot fall into two
or less clusters. The information columns2i, 2i + 1 of the
structured code are at locations2l, 2l + p in the permuted
code. Hence uncorrectable combinations{S1, 2i, 2i+ 1, R0}
of the structured code from Lemma 9 map to combinations
{S1, 2l, 2l + p, R0} that occupy more than two clusters in
the permuted code.

Theorem 11.For p > 5, the ratio between the number of three-
cluster4-erasures correctable by the permuted code and the
total number of three-cluster4-erasures is greater than0.972.
As p goes to infinity, this ratio tends to1.

Proof: If a 4-erasure falls into three clusters, then it either
has2 even and2 odd columns or3 even and1 odd columns
(or the complement). Lemmas 7, 8 and 9 address all such com-
binations, except the following. Combinations{S1, 0, p, R0}
and{S1, p− 1, 2p− 1, R0} mapped from{S1, 0, 1, R0} and
{S1, 2p− 2, 2p− 1, R0}, respectively, which are exceptions

8

to case 3 of Lemma 9. Also,{P, S1, 2i + 1, 2 j + 1} and
{2i, 2 j, R0,Q} cannot be corrected as they are not included
in Lemma 7.

Hence the number of non-correctable 4-erasures with three
clusters is

2+ 2

(
p

2

)

The total number of 4-erasures with three clusters is

3

(
2p− 1

3

)

(in general this equals3(n−3
3) for length n arrays since by

taking any choice of3 points from a set ofn− 3 points on
a line, we can uniquely obtain an erasure combination with
three clusters, following the procedure below. We first choose
3 points out of then− 3 points to be the cluster-start locations.
Then the point that represents the cluster with size2 is selected
from these3 points (for that we have the factor3). Given these
choices, the 3 clusters are obtained by augmenting the size
2 cluster with an additional point to its right and in addition
augmenting each of the two left points with a point to its right
as a cluster spacer. Hence any such choice gives a 3-cluster.)

Thus the ratio between the number of correctable 3-cluster
4-erasures and the total number of 3-cluster 4-erasures equals

3(2p−1
3)− 2− 2(p2)

3(2p−1
3)

= 1−
p2 − p+ 2

4p3 − 12p2 + 11p− 3

For p = 11 (the smallest primep > 5 with 2 primitive in
GF(p)), the ratio attains its minimal value of0.972. Moreover,
it is readily seen that this ratio equals1− o(1), whereo(1)
are terms that tend to zero asp goes to infinity.
The only uncorrectable clustered erasure combinations are
ones that include parity erasures. Had we lifted the re-
quirement from the codes to be strongly systematic (i.e. to
have dedicated columns for parity bits), it would have been
possible to correct all clustered erasures. A similar reduction
in correction capability of strongly systematic codes was on
the part of generalized EVENODD codes [4], compared to the
similar non-systematic codes of [5]. While the latter are MDS
for any r-erasure correction, the former haver parameters
with uncorrectable erasure combinations that include parity
columns.

C. Random erasure correctability

The codes are next shown to correct a7/8 portion of all
combinations of4 erasures.

Theorem 12. For p > 5, the ratio between the number of
4-erasures that are correctable by the permuted code and the
total number of4-erasures is greater than0.865. As p goes to
infinity, this ratio tends to7/8 = 0.875.

Proof: Building on Lemmas 7, 8 and 9, the number of
correctable 4-erasures equals

(1)
︷ ︸︸ ︷

2

(
p+ 3

3

)

(p+ 1)− (p+ 1)2 +

(2)
︷ ︸︸ ︷
(
p

2

)(
p

2

)

+ 2p

(
p

2

)

︸ ︷︷ ︸

(3)

+ p2 − 2

︸ ︷︷ ︸

(4)

(1), obtained by Lemma 7, is the number of ways to
select3 even information columns (orR0 or P or Q) and
1 odd information column (orS1), multiplied by2 to include
the complement case, and subtracting the doubly counted
combinations with bothP andQ.

(2), obtained by Lemma 8, is the number of ways to select
2 even and2 odd information columns.

(3), obtained by cases 1 and 2 of Lemma 9, is the number
of ways to select2 even information columns and1 odd in-
formation column, multiplied by2 to include the complement
case.

(4), obtained by case 3 of Lemma 9, is the number of
ways to select an even information column and an odd
information column that are not one of the two combinations
{S1, 0, p, R0} and {S1, p− 1, 2p− 1, R0}, not correctable
by Lemma 9.

The total number of 4-erasure combinations is
(
2p+ 4

4

)

Taking the ratio of the two we obtain

7p4 + 34p3 + 59p2 + 33p+ 10

8p4 + 40p3 + 70p2 + 50p+ 12

For p = 11, the ratio attains its minimal value of0.865.
Moreover, it is readily seen that this ratio equals7/8− o(1).

VI. EFFICIENT DECODING OFERASURES

In section V, the decodability of clustered and random
erasures was proved by algebraic reasoning. In this section
we take a more constructive path and study efficient ways
to decode random and clustered erasures. The purpose of
this analysis is to prove that decoding of the new code can
be done using3kp + o(p2) bit operations, while the best
known algorithm for a 4-erasure correcting MDS code is
4kp + o(p2) [5]. Since k is taken to be in the order ofp,
saving aboutkp bit operations gives a quadratic (inp) savings
in computations that is very significant in practice for large p.

For the decoding-complexity analysis, we only consider
erasure of 4information columns, since these are the most
complex cases to decode. We moreover only consider erasures
of two even columns and two odd columns, since it was shown
in Lemma 7 that the three even and one odd case (or three
odd and one even) reduces to decoding three erasures on the
even (or odd) columns of the code. Throughout the section
we will assume that one of the erased columns is the left-
most even information column, as all other cases are cyclically
equivalent.

9

A. Description of 4-erasure decoding algorithm

A general 4-erasure can be decoded using a straightforward
procedure overRp. Ways to perform the steps of that proce-
dure in an efficient way are the topic of the next sub-section.
The erased symbols, which represent the content of the erased
array columns, are denoted by{e1, o1, e2, o2}. e1, e2 have even
locations ando1, o2 have odd locations. First the syndrome
vectors of the array is calculated by taking the product

s = Hr

where r is the length2p + 4 column vector overRp that
represents the array contents, with erased columns set to
the zero element. From the sparsity of the matrixH, the
complexity of obtaining the syndrome vector is3kp (R0 and
S1 each checks only half of the columns). Now the erased
columns can be directly recovered by







e1
o1
e2
o2







= E−1
s (6)

whereE denotes the4× 4 sub-matrix ofH that corresponds
to the 4 erased columns’ locations:

E =







1 1 1 1

0 α−1
1 0 α−1

3
1 0 α2

2 0
1 α1 α2 α3






.

Recall from (1) that eachαi is an element inRp of the form
αli , for some0 6 li 6 p− 1. Therefore,E can be written as

E =







1 1 1 1
0 α−u 0 α−w

1 0 α2v 0
1 αu αv αw






.

The inverse ofE, which is used in (6) to decode erasures, is
now given in a closed form

E−1 =
(
αu +αv +αw +αu+v +αv+w

)−1
·







1+αv 0 0 0
0 αu +αw 0 0
0 0 1 +αv 0
0 0 0 αu +αw







−1

·





α2v(αu+αw) αu+2v+w αu+αv+αw α2v

αu+v αu+w(αv+αw+αv+w) αu αu(1+αv)

αu+αw αu+w 1+αu+αw 1
αv+w αu+w(αu+αv+αu+v) αw αw(1+αv)





From (6) and the closed-form expression above, the erased
symbol e1 can be recovered by the following product

e1 =
[(
αu +αv +αw +αu+v +αv+w

)
· (1 +αv)

]−1
·

·
[
α2v(αu +αw), αu+2v+w, αu +αv +αw, α2v

]
· s

Oncee1 is known,e2 can be recovered using a simple parity
completion with the aid of parity columnR0. The bits of the
odd columns are then recovered by a chain of XOR operations
with the aid of parity columnsP,Q, that can now be adjusted
to P1,Q1 when all even columns are known.

Calculating e1 then reduces to the following chain of
calculations

1) Finding the inverse of
(
αu +αv +αw +αu+v +αv+w

)
(1 +αv) overRp.

2) Multiplication of sparseRp elements by denseRp

elements. The sparse elements are the four elements
from the E matrix (that have a small (6 3) constant
number of non-zero monomials, for anyp) and the dense
elements are the four syndrome elements.

3) Multiplication of two denseRp elements resulting from
the previous steps.

B. Analysis of 4-erasure decoding algorithm

We now analyze the number of bit operations required for
each decoding task.

1) Finding inverses ofRp elements:
The inverse of an elementf (α)∈Rp is the element
f̃ (α) that satisfies f̃ (x) f (x) + a(x)Mp(x) = 1, for
some polynomiala(x). When f (α) is invertible, the
polynomial f̃ (x) can be found by the Extended Eu-
clid Algorithm for finding the greatest common divi-
sor of the polynomialsf (x) and Mp(x). An efficient
algorithm for polynomial greatest common divisors is
given in [1, Ch.8] that requiresO(p log4 p) bit opera-
tions (O(log p) polynomial multiplications, each taking
O(p log3 p) bit operations, as shown in item 3 below).

2) Multiplication of a sparse Rp element by a dense
Rp element requiresO(p) bit operations. Since the
number of non-zero monomials in the sparse polynomial
is constant inp, the trivial polynomial multiplication
algorithm requiresO(p) shifts and additions modulo2.

3) Multiplication of two dense Rp elementscan be done
in O(p log3 p) bit operations using Fourier-domain
polynomial multiplication [1, Ch.7]. We describe this
procedure for the special case of polynomial coefficients
over GF(2). Let N > 2p − 2 be the smallest such
integer of the formN = 2ℓ − 1, whereℓ is an integer.
Letω be a principalNth root of unity in the finite field
GF(2ℓ). Thenω defines a Discrete Fourier Transform
on lengthN vectors over GF(2ℓ). The product of two
polynomials of degreep− 2 or less can be obtained by
element-wise multiplication of their individual Discrete
Fourier Transforms, and then applying the Inverse Dis-
crete Fourier Transform to the resulting lengthN vector.
Using the FFT algorithm, each transformation requires
O(N log N) operations over GF(2ℓ), or O(N log3 N)
bit operations. The element-wise multiplication requires
N multiplications over GF(2ℓ), or O(N log2 N) bit
operations. SinceN < 4p, the total number of bit op-
erations needed for multiplying two denseRp elements
is O(p log3 p).

Since each of the decoding operations in 1-3 above has a
complexity that vanishes with respect top2, the 3kp com-
plexity of finding the syndrome vector dominates the decoding
complexity whenk is of the same order asp.

10

VII. R ELIABILITY ANALYSIS OF THE CODE IN STORAGE

ARRAYS

The main motivation for the construction of array codes in
general, and the codes of this paper in particular, is to provide
efficient protection for storage arrays against device failures.
The benefit of deploying an array code in a practical storage
system obviously lies in the trade-off it achieves between
erasure correction capability and implementation complexity.
To this end, the correction capability of the new codes was
characterized in detail in section V. The purpose of this section
is to project this correction capability onto thereliability
domain, analyzing the storage array’s susceptibility to data
loss, using a statistical framework. A common reliability
metric for storage arrays is theexpectedtime before data loss,
denotedMTTDL (Mean Time To Data Loss) [6]. Ultimately,
this section will detail a procedure to calculate theMTTDL
of storage arrays, when protected by the new codes, in the
presence of random and clustered device failures (erasures).
This will be done after first presenting the general method of
MTTDL calculation as applied in the literature to MDS codes
under random erasures.

A. MTTDL calculation for MDS codes under random era-
sures

Using the method presented in [6, Ch.5] for single-erasure-
correcting arrays under random erasures (termedIndependent
disk lifetimestherein), we calculate theMTTDL of all-4-
erasure-correcting arrays as an example that is later used for
comparison with the new codes. The direct calculation of
the MTTDL becomes a simpler task if device failures and
repairs follow a Markov process and can thus be described
by a Markov state diagram. To allow that, the following
assumptions are made.

• Device lifetimes follow an exponential distribution with
equal mean2 MTTFdevice = 1/λ.

• Repair times are also exponential with mean
MTTRdevice = 1/µ.

• The number of devices is large compared to the number
of tolerable failures, so the transition probabilities be-
tween states do not depend on the instantaneous number
of failed devices.

When those assumptions are met, the reliability of a device
array can be described by the state diagram shown in Figure 6.
The label of each state represents the number of failed devices.

0 1 2 3 4 F

nλnλnλnλ

nλ

µµµµ

Figure 6. State diagram description of all-4-erasure correcting arrays
under random failures. The failure process with ratenλ moves to a
higher failure state. The repair process with rateµ moves to a lower
failure state.

2MTTF stands for Mean Time To Failure and MTTR stands for Mean Time
To Repair

StateF (Fail) represents permanent data loss resulting from a
failure count that is above the array’s correction capability.
The exponential distributions allow specifying the transitions
between states in terms ofrates. The transition rate from
lower to higher states is the inverseMTTFdevice of individual
devices, times the number of devices in the array. The reverse
transitions that represent repairs have rates that are the inverse
MTTRdevice assumed in the system. Using the state diagram,
the MTTDL is the expected time to get from state0 (initial
state) to stateF (data loss state).

MTTDL , E[0 → F]

The Markov property of the process permits the decomposition

E[0 → F] = E[time stays in 0] +E[1 → F] =
1

nλ
+E[1 → F]

Linear relationships betweenE[i → F] and E[j → F] are
induced whenever statei and statej are connected. For all-
4-erasure correcting arrays (MDS-4), theMTTDL is then
obtained as the solution (forE[0 → F]) of the following linear
system.







1 −1 0 0 0
− µ
µ+nλ 1 − nλ

µ+nλ 0 0

0 − µ
µ+nλ 1 − nλ

µ+nλ 0

0 0 − µ
µ+nλ 1 − nλ

µ+nλ

0 0 0 − µ
µ+nλ 1













E[0→F]
E[1→F]
E[2→F]
E[3→F]
E[4→F]




 =









1
nλ
1

µ+nλ
1

µ+nλ
1

µ+nλ
1

µ+nλ









that is found to be

MTTDLMDS4 =
1

Λ5
(5Λ4 + 4µΛ3 + 3µ2Λ2 + 2µ3Λ+µ4)

whereΛ , nλ is used for notational convenience.

B. MTTDL calculation for the new codes under random and
clustered failures

For the model of random failures, theMTTDL of the new
codes can be calculated by a straightforward application ofthe
method in the previous sub-section – executed on the transition
diagram of Figure 7.

0 1 2 3 4 F
Λ

ΛΛΛ

µµµµ

Λ/8

7Λ/8

Figure 7. State diagram description of arrays protected with the new
codes, under random failures. Since the new codes correct only a 7/8
ratio of 4-erasures, the failure rate out of state3 is split to7Λ/8 into
state 4, as before, andΛ/8 directly into stateF.

The corresponding linear system of equations on the5 active
states0, 1, 2, 3, 4 is now







1 −1 0 0 0
− µ
µ+Λ 1 − Λ

µ+Λ 0 0

0 − µ
µ+Λ 1 − Λ

µ+Λ 0

0 0 − µ
µ+Λ 1 − 7

8 ·
Λ

µ+Λ

0 0 0 − µ
µ+Λ 1













E[0→F]
E[1→F]
E[2→F]
E[3→F]
E[4→F]




 =









1
Λ
1

µ+Λ
1

µ+Λ
1

µ+Λ
1

µ+Λ









11

The solution of that system gives

MTTDLnew,rand =
39Λ4 + 35µΛ3 + 26µ2Λ2 + 17µ3Λ+ 8µ4

8Λ5 +µΛ4

The exactMTTDL calculations are now used to compare the
reliability of the new codes to the reliabilities of all-4-erasure
and all-3-erasure correcting codes. For the comparison,Λ is
fixed to be100/8760[1/hr], which applies e.g. to an array with
100 devices andMTTFdevice = 1[Year]. TheMTTDL in hours
([hr]) is then calculated for repair ratesµ between0.01[1/hr]

and10[1/hr]. The graph in Figure 8 shows that the new codes

106

108

1010

1012

1014

2 4 6 8

all-3
new

all-4

µ [1/hr]

MTTDL [hr]

Figure 8. MTTDL curves under random failures for the new codes,
for all-3-erasure and for all-4-erasure correcting codes.Under random
failures, the new codes are order of magnitude better than all-3-
erasure correcting codes, and two orders of magnitude inferior to
all-4-erasure correcting codes.

outperform 3-random erasure codes by an order of magnitude,
despite having the same encoding complexity, the same update
complexity, and asymptotically the same decoding complexity.
However, in the presence of pure random erasures, the new
codes are still two orders of magnitude worse than 4-random
erasure-correcting codes.

To compare the new codes and 4-random erasure codes in
the presence of both random and clustered failures, the state
diagram of the new codes in Figure 7 needs to be modified to
include additional states that represent clustered failures. The
state diagram of 4-random failure codes in Figure 6 remains
the same since this code is agnostic to the distinction between
random and clustered failures. To take clustered failures into
account in the Markov failure model, we add the following
assumptions to those of the previous sub-section.

• Times to clustered failures (failures that are adjacent to an
unrepaired previous failure) are exponentially distributed
with mean1/χ. Times to random failures (failures that
are not clustered) are exponentially distributed with mean
1/Ω. The two rates sum to the total failure rate as in the
random-only case:Λ = χ+Ω.

• The exponentially-distributed repair process eliminates
isolated failures before clustered ones.

With these assumptions, the state diagram of arrays protected
with the new codes under random and clustered failures is
given in Figure 9. States2′,3′ and 4′ in the upper branch
represent2, 3 and 4 clustered (not all-isolated) failures,
respectively. The transitions marked withχ represent moving

0 1 2 3 4 F

2′ 3′ 4′

Λ

ΛΛ

Λ

Λ

Ω Ω

χ χ χ
µ

µ µ

µµµµ

Ω/8

7Ω/8

Figure 9. State diagram description of the new codes under random
and clustered failures. The rateΛ failure process is now divided to
a clustered-failure rateχ and random-failure rateΩ.

from all-isolated failures to a clustered failure combination. At
the upper branch, both random and additional clustered failures
result in clustered failure combinations – and that accounts for
the transitions markedΛ, the total failure rate. From state0, a
clustered failure is undefined, hence the totality of the failure
process moves to the same state 1.
Solving the8× 8 linear system for the diagram in Figure 9
(expression omitted), theMTTDL can be calculated in closed
form for all combinations ofχ,Λ,µ. The resultingMTTDL
curves for the new codes under three differentχ values
are plotted in Figure 10, and compared to theMTTDL
of a 4-random failure code under the same conditions (4-
random codes give the sameMTTDL independent of the
ratio betweenχ andΛ). The curves of Figure 10 prove that as
clustered failures become more dominant, the reliability of the
new codes is approaching the reliability of a 4-random erasure-
correcting code. This by itself is not a surprising result, but the
ability to calculate the exact expected reliability for arbitrary
χ values is a useful tool for the deployment of the new codes
in real storage systems.

1010

1012

1014

2 4 6 8

χ = 0

χ = Λ/2
χ = 2Λ/3
all-4

µ [1/hr]

MTTDL [hr]

Figure 10. MTTDL curves under random and clustered failures for
the new codes and for all-4-erasure correcting code. For three values
of χ, the MTTDL of the new codes is shown by the solid curves.
The MTTDL of an all-4-erasure correcting code is the same for all
values ofχ.

12

VIII. C ODE EVALUATION AND COMPARISON WITH

EXISTING SCHEMES

We compare the new codes to EVENODD (r = 4)
codes using various performance criteria. For correction of
4-erasures, the EVENODD (r = 4) is the best known code.
The comparison results are first summarized in Table I. The
erasure-correction properties in Table I apply to any primep
such that2 is primitive in GF(p).

New codes 4-EVENODD
Code Length (up to) 2p p

Redundancy 4 4
Encoding Complexity 3kp 4kp
Decoding Complexity 3kp 4kp
Update Complexity 5 7
Clustered Erasures ∼ All All
Random Erasures 7/8 All

TABLE I
COMPARISON BETWEEN THE NEW CODES ANDEVENODDCODES

The redundancyr is 4 for both codes. The new codes can
support up to2p information columns while EVENODD can
only have up top. Since parity columnsR0 and S1 each
depend on half of the information columns, the encoding
complexity of the new codes is3kp, compared to4kp in
EVENODD. In both cases, whenk is of the same order
of p, the decoding complexity is dominated by syndrome
calculations (for the new codes this has been shown in
section VI). Therefore, similarly to the encoding case, thenew
codes need about3kp bit operations to decode, compared to
4kp for EVENODD. As for the update-complexity, the new
codes are significantly more efficient. Their small-write update
complexity is5. Each of the2p(p− 1) updated information
bits needs3 parity updates:P,Q, R0 for bits in even columns
and P,Q, S1 for bits in odd columns. The4(p − 1) bits
that belong toEO diagonals (2(p− 1) in Q and p − 1 in
each ofR0, S1) require additionalp − 1 parity-bit updates
each for adjusting even/odd parities. The small-write update-
complexity of the new code is then obtained by averaging

6p(p− 1) + 4(p− 1)2

2p(p− 1)
= 5− o(1)

Recall that EVENODD has small-write update-complexity
of 2r − 1 − o(1) = 7 − o(1). The full-column update-
complexity of the new code is3 while EVENODD’s is4. Thus
the new code offers a28.57% improvement in the average
number of small-writes and25% improvement in the number
of full-column updates. The fraction of clustered erasures
correctable by the new codes is1− o(1), essentially the same
as EVENODD’s. Only in random erasure-correction capability
are the new codes inferior to EVENODD codes: the fraction
of correctable random erasures is7/8− o(1) compared to1
for EVENODD.

APPENDIX A
ARRAY CODES: INTRODUCTORY EXAMPLE

The idea behind array codes is that the code is defined
on two-dimensional arrays of bits (or groups of bits), and

encoding and decoding operations are performed over the
binary alphabet, using simple eXclusive OR operations. An
example of an array code with two parity columns that can
recover from any two column erasures is given below. The+
signs represent binary eXclusive OR operations. The three left
columns contain pure information and the two right columns
contain parity bits that are computed from the information bits
as specified in the chart below.

a b c a + b+ c a + f + e + c
d e f d+ e + f d + b + e + c

Like encoding, decoding is also performed using simple
eXclusive OR operations. For example, recovering the bits
a, b, d, e at the two leftmost columns is done by the following
chain of computations.

e = c + (a+ b+ c) + (d+ e + f) + (a + f + e + c)

+ (d+ b + e + c)

d = e + f + (d+ e + f)

a = c + f + e + (a + f + e + c)

b = c + a + (a + b + c)

It is left as an exercise to verify that any two column erasures
can be recovered by the code above. The small-write update
complexity (the qualifiersmall-write is often omitted) of an
array code is the number of parity-bit updates required for
a single information-bit update, averaged over all the array
information bits. In the sample code above, each of the bits
a, b, d, f requires2 parity-bit updates, and each ofe, c requires
3 parity-bit updates. The update complexity of that sample
code is hence(4 · 2 + 2 · 3)/6 = 2.333.

REFERENCES

[1] A. Aho, J. Hopcroft, and J. Ullman,The design and analysis of computer
algorithms. Reading, MA USA: Addison-Wesley, 1974.

[2] L. Bahl and R. Chien, “Multiple-burst-error correctionby threshold
decoding,”Information and Control, vol. 15, no. 5, pp. 397–406, 1969.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: an efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Transactions on Computers, vol. 44, no. 2, pp. 192–202, 1995.

[4] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent
parity symbols,” IEEE Transactions on Information Theory, vol. 42,
no. 2, pp. 529–542, 1996.

[5] M. Blaum and R. Roth, “New array codes for multiple phasedburst
correction,” IEEE Transactions on Information Theory, vol. 39, no. 1,
pp. 66–77, 1993.

[6] G. Gibson,Redundant Disk Arrays. Cambridge MA, USA: MIT Press,
1992.

[7] C. Huang, M. Chen, and J. Li, “Pyramid codes: flexible schemes to
trade space for access efficiency in reliable data storage systems,” in
Proceedings of the Sixth IEEE International Symposium on Network
Computing and Applications, Cambridge, MA USA, 2007.

[8] C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting
triple storage node failures,” inProceedings of the 4th USENIX Confer-
ence on File and Storage Technologies, San-Francisco CA, 2005.

[9] S. Lin and D. Costello,Error Control Coding: Fundamentals and
Applications. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[10] F. MacWilliams and N. Sloane,The Theory of Error-Correcting Codes.
Amsterdam, The Netherlands: North Holland, 1977.

[11] J. Paris and A. Amer, “Using shared parity disks to improve the relia-
bility of RAID arrays,” in Proc. of the 28th International Performance
of Computers and Communication Conference (IPCCC 2009), Phoenix,
AZ, Dec. 2009.

13

[12] J. Paris and D. Long, “Using device diversity to protectdata against
batch-correlated disk failures,” inProc. of the 2nd International Work-
shop on Storage Security and Survivability (StorageSS 2006), Alexan-
dria, VA, Oct. 2006.

[13] D. A. Patterson, G. A. Gibson, and R. Katz, “A case for redundant arrays
of inexpensive disks,” inProc. SIGMOD Int. Conf. Data Management,
1988, pp. 109–116.

