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Abstract—MDS codes are erasure-correcting codes that can
correct the maximum number of erasures given the number of
redundancy or parity symbols. If an MDS code hasr parities
and no more than r erasures occur, then by transmitting all
the remaining data in the code one can recover the original
information. However, it was shown that in order to recover a
single symbol erasure, only a fraction of1/r of the information
needs to be transmitted. This fraction is called the repair
bandwidth (fraction). Explicit code constructions were given in
previous works. If we view each symbol in the code as a vector
or a column, then the code forms a 2D array and such codes
are especially widely used in storage systems. In this paper, we
ask the following question: given the length of the columnl, can
we construct high-rate MDS array codes with optimal repair
bandwidth of 1/r, whose code length is as long as possible? In
this paper, we give code constructions such that the code length
is (r + 1) logr l.

I. I NTRODUCTION

MDS (maximum distance separable) codes are optimal
error-correcting codes in the sense that they have the largest
minimum distance given the number of parity symbols. If
each symbol is a vector or a column, we call such a code an
MDS array code (e.g. [2], [7], [11], [22], [23]). In (distributed)
storage systems, each column is usually stored in a different
disk, and MDS array codes are widely used to protect data
against erasures due to their error correction ability and low
computational complexity. In this paper, we call each symbol
a column or a node, and the column length, or the vector size
of a symbol, is denoted byl.

If an MDS code hasr parities, then it can correct up tor
erasures of entire columns. In this paper, we not only would
like to recover anye erasures,e ≤ r, but also care about the
efficiency in recovery: what is the fraction of the remaining
data transmitted in order to correcte erasures? We call this
fraction therepair bandwidth (fraction). For example, ife = r
erasures happen, it is obvious that we have to transmit all of
the remaining information, therefore, the fraction is1. For
e = 1 erasure it was shown in [8] (which also formulated the
repair problem) that this fraction is actually lowered bounded
by 1/r. If e ≤ r symbols are erased and we repair them exactly
as they were, this fraction is lower bounded bye/r [17]. If
this bound is achieved for some code, we say it has optimal
repair. Since the repair of information is much more crucial
than redundancy, and we study mainly high-rate codes, we
will focus on the optimal repair of information or systematic
nodes. Moreover, since single erasure is the most common
scenario in practice, we assumee = 1. For example, in Figure

1, we show an MDS code with4 systematic nodes,r = 2
parity nodes, and column lengthl = 2. One can check that
this code can correct any two erasures, therefore it is an MDS
code. In order to repair any systematic node, only1/r = 1/2
fraction of the remaining information is transmitted. Thusthis
code has optimal repair.

In [12]–[14], [20], [21] codes achieving the repair band-
width lower bound were studied where the number of system-
atic nodes is less than the number of parity nodes (low code
rate). For arbitrary code rate, [6], [15] proved that the lower
bound is asymptotically achievable when the column lengthl
goes to infinity. And [3]–[5], [9], [10], [16], [17], [19] studied
codes with more systematic nodes than parity nodes (high code
rate) and finitel, and achieved the lower bound of the repair
bandwidth. If we are interested in thecode length, i.e., the
number of systematic nodes givenl, low-rate codes have a
linear code lengthl + 1 [13], [14]; on the other hand, high-
rate constructions are relatively short. For example, suppose
that we have 2 parity nodes, then the number of systematic
nodes is onlylog l in all of the constructions, except for [5]
it is 2 log l. In [18] it is shown that an upper bound for the
code length isk ≤ 1 + l( l

l/2), but the tightness of this bound
is not known. It is obvious that there is a big gap between this
upper bound and the constructed codes.

The main contribution of this paper is to construct codes
with 2 parity nodes and3 log l systematic nodes. The code
uses a finite field of size1 + 2 log l. Moreover, we will give
a general construction of high-rate codes with(r + 1) logr l
systematic nodes for arbitrary number of paritiesr. It turns
out that this construction is a combination of the code in [5]
and also [3], [10], [16].

The rest of the paper is organized as follows: in Section
II we will formally introduce the repair bandwidth and the
code length problem. In Section III codes with 2 parity nodes
are constructed, and we show that the code length is3 log l.
Generalized code constructions for arbitrary number of parities
are given in Section IV and finally we conclude in Section V.

II. PROBLEM SETTINGS

An (n, k, l) MDS array code is an(n − k)-erasure-
correcting code such that each symbol is a column of length
l. The number of systematic symbols isk and the number
of parity symbols isr = n − k. We call each symbol a
column or a node, andk the code length. We assume that
the code is systematic, hence the firstk nodes of the code



N1 N2 N3 N4 P1 P2
a b c d a + b + c + d 2a + w + 2b + 3c + d
w x y z w + x + y + z 3w + b + 3x + 2y + z

Figure 1. (n=6,k=4,l=2) MDS code over finite fieldF4 generated by primitive polynomialx2 + x + 1. Here2 is a primitive element of the field. The first
4 nodes are systematic and the last2 are parities. To repairN1 transmit the first row from every remaining node. To repairN2 transmit the second row. To
repair N3 transmit the sum of both rows. And to repairN4 transmit the sum of the first row and2 times the second row from nodesN1, N2, N3, P1, and
the sum of the first row and3 times the second row from nodeP2.

are information or systematic nodes, and the lastr nodes are
parity or redundancy nodes.

Suppose the columns of the code areC1, C2, . . . , Cn, each
being a column vector inFl, for some finite fieldF. We
assume that for parity nodek + i, information nodej, the
coding matrix is Ai,j of size l × l, i ∈ [r], j ∈ [k]. And the
parity columns are computed as

Ck+i =
k

∑
j=1

Ai,jCj,

for all i ∈ [r]. For example, in Figure 1, the coding matrices
are A1,j = I for all j ∈ [k] and A2,j, j = 1, 2, 3, 4 are

(

2 1
0 3

)

,

(

2 0
1 3

)

,

(

3 0
0 2

)

,

(

1 0
0 1

)

.

Here the finite field isF4 generated byx2 + x + 1. In our
constructions, we require thatA1,j = I for all j ∈ [k]. Hence
the first parity is the row sum of the information array. Even
though this assumption is not necessarily true for an arbitrary
linear MDS array code, it can be shown that any linear code
can be equivalently transformed into one with such coding
matrices [18].

Suppose a code has optimal repair for any systematic node
i, i ∈ [k], meaning only a fraction of1/r data is transmitted in
order to repair it. When a systematic nodei is erased, we are
going to use sizel/r × l matricesSi,j, j 6= i, j ∈ [n], to repair
the node: From a surviving nodej, we are going to compute
and transmitSi,jCj, which is only 1/r of the information in
this node.

Notations: In order to simplify the notations, we write
Si,j and Si,k+tAt,j both as matrices of sizel/r × l and the
subspaces of their row spans.

Optimal repair of a systematic nodei is equivalent to the
following subspace property: There exist matricesSi,j, j 6=
i, j ∈ [n], all with size l/r × l, such that for allj 6= i, j ∈
[k], t ∈ [r],

Si,j = Si,k+tAt,j, (1)

where the equality is defined on the row spans instead of the
matrices. And

r

∑
t=1

Si,k+tAt,i = F
l . (2)

Here the sum of two subspacesA, B of F
l is defined asA +

B = {a + b : a ∈ A, b ∈ B}. Obviously, the dimension of
each subspaceSi,k+tAt,i is no more thanl/r, and the sum of
r such subspaces has dimension no more thanl. This means
these subspaces intersect only on the zero vector. Therefore,

the sum is actually the direct sum of vector spaces. Moreover,
we know that eachSi,k+t has full rankl/r.

We claim that (1) (2) are necessary and sufficient conditions
for optimal repair. The sketch of the proof is as follows:
suppose the code has optimal repair bandwidth, then we need
to transmitl/r elements from each surviving column. Suppose
we transmitSi,jCj from a systematic nodej 6= i, j ∈ [k],
and Si,k+tCk+t = ∑

k
z=1 Si,k+tAt,zCz from a parity node

k + t ∈ [k + 1, k + r]. Our goal is to recoverCi and cancel
out all Cj, j 6= i, j ∈ [k]. In order to cancel outCj, (1) must
be satisfied. In order to solveCi, all equations related toCi

must have full rankl, so (2) is satisfied. One the other hand,
if (1) (2) are satisfied, one can transmitSi,jCj from each node
j, j 6= i, j ∈ [n] and optimally repair the nodei. Similar
interference alignment technique was first introduced in [6],
[15] for the repair problem. Also, [13] was the first to formally
prove similar conditions.

It is shown in [18] that we can further simplify our repair
strategy of nodei and assumeSi,j = Si, for all j 6= i, j ∈ [n]
by equivalent transformation of the coding matrices (probably
with an exception of the strategy of one node). Then the
subspace propertybecomes for anyj 6= i, j ∈ [k], t ∈ [r],

Si = Si At,j. (3)

Again the equality means equality of row spans. And the sum
of subspaces satisfies

r

∑
t=1

Si At,i = F
l . (4)

Notice that if (3) is satisfied, we can say thatSi is an invariant
subspace ofAt,j (multiplied on the left) for all parity nodes
k + t and all information nodesj 6= i. If At,j is diagonalizable
and hasl linearly independent left eigenvectors, an invariant
subspace has a set of basis which are all eigenvectors ofAt,j.
As a result, our goal is to find matricesAt,j and their invariant
subspaces. And by using sufficiently large finite field and
varying the eigenvalues of the coding matrices, we are able
to ensure that the codes are MDS. Therefore, we will first
focus on finding eigenvectors of the coding matrices and then
discuss about the eigenvalues.

For example, in Figure 1, the matricesSi, i = 1, 2, 3 are

(1, 0), (0, 1), (1, 1).

One can check that the subspace property (3)(4) is satisfied for
i ∈ [3]. For instance, sinceS3 = (1, 1) is an eigenvector for
At,j, t = 1, 2, j = 1, 2, 4, we haveS3 = S3 At,j. And it is easy
to check thatS3 ⊕ S3 A2,3 = span(1, 1)⊕ span(3, 2) = F

2.
For the nodeN4, the matricesS4,j’s are not equal. In fact
S4,j = (1, 2) for j = 1, 2, 3, 5 andS4,6 = (1, 3).



III. C ODE CONSTRUCTIONS WITH2 PARITIES

In this section, we are going to construct codes with column
length l = 2m, k = 3m systematic nodes, andr = 2 parity
nodes. Herem is some integer. As we showed in the previous
section, we can assume the coding matrices are

(

I · · · I
A1 · · · Ak

)

, (5)

where A1,i = I and A2,i = Ai correspond to parity1 and 2
respectively.

Now we only need to find coding matricesAi’s, and
subspacesSi’s. For now we only care about eigenvectors ofAi,
not its eigenvalues because eigenvectors determine the repair
bandwidth. Later we will show that using a large enough finite
field, we can choose the eigenvalues such that the code is
indeed MDS. In the following construction, for anyi ∈ [k],
Ai has two different eigenvaluesλi,0, λi,1, each corresponding
to l/2 = 2m−1 eigenvectors. Denote these eigenvectors as

Vi,0 =











vi,1

vi,2
...

vi,l/2











for eigenvalueλi,0, and

Vi,1 =











vi,l/2+1

vi,l/2+2
...

vi,l











for eigenvalueλi,1. Therefore,Ai can be computed as

Ai =

(

Vi,0

Vi,1

)−1
(

λi,0 I l
2×

l
2

λi,1 I l
2×

l
2

)

(

Vi,0

Vi,1

)

.

By abuse of notations, we also useVi,0, Vi,1 to rep-
resent the eigenspace corresponding toλi,0, λi,1, respec-
tively. Namely, Vi,0 = span{vi,1, . . . , vi,l/2} and Vi,1 =
span{vi,l/2+1, . . . , vi,l}.

When a systematic nodei is erased,i ∈ [k], we are going
to useSi to rebuild it. Thesubspace propertybecomes

Si = Si Aj, ∀j 6= i, j ∈ [k], (6)

Si + Si Ai = F
l . (7)

In the following construction,ea, a ∈ [0, l − 1], are some
basis ofFl, for example, one can think of them as the standard
basis. The subscripta is represented by its binary expansion,
a = (a1, a2, . . . , am). For example, ifl = 16, m = 4, a = 5,
then e5 = e(0,1,0,1) and a1 = a3 = 0, a2 = a4 = 1.

In order to construct the code, we first define3 sets of
vectors fori ∈ [m]:

Pi,0 = {ea : ai = 0},

Pi,1 = {ea : ai = 1},

Qi = {ea + eb : ai + bi = 1, aj = bj, ∀j 6= i}.

For example, ifm = 2, i = 1, then P1,0 = {e(0,0), e(0,1)} =
{e0, e1}, P1,1 = {e(1,0), e(1,1)} = {e2, e3}, andQ1 = {e(0,0) +
e(1,0), e(0,1) + e(1,1)} = {e0 + e2, e1 + e3}. Notation: The
subscripti for setsPi,u, Qi and ai (the i-th digit of vectora)
is written modulom. For example, ifi ∈ [tm + 1, (t + 1)m]
for some integert, thenPi,u := Pi−tm,u.

Construction 1 The(n = 3m + 2, k = 3m, l = 2m) code has
coding matricesAi, i ∈ [k], each with two distinct eigenvalues,
and eigenvectorsVi,0, Vi,1. When nodei is erased, we are going
to useSi to rebuild. We construct the code as follows:

1) For i ∈ [m], Vi,0 = span(Qi), Vi,1 = span(Pi,1), Si =
span(Pi,0).

2) For i ∈ [m + 1, 2m], Vi,0 = span(Pi,0), Vi,1 =
span(Qi), Si = span(Pi,1).

3) For i ∈ [2m + 1, 3m], Vi,0 = span(Pi,0), Vi,1 =
span(Pi,1), Si = span(Qi).

Example 1 Deleting the node N4, Figure1 is a code using
Construction1 and l = 2. Another example ofl = 4 is
shown in Figure2. One can check(6) holds. For instance,
S1 = span{e0, e1} = span{e0 + e1, e1} is an invariant
subspace ofA2. So S1 = S1 A2. If the two eigenvalues ofAi

are distinct, it is easy to show thatSi ⊕ Si Ai = F
4, ∀i ∈ [6].

The above example shows that form = 1, 2, the constructed
code has optimal repair. It is true in general, as the following
theorem suggests.
Theorem 2 Construction1 is a code with optimal repair band-
width 1/2 for rebuilding any systematic node.

Proof: By symmetry of the first two cases in the construc-
tion, we are only going to show that the rebuilding of node
i, i ∈ [m] ∪ [2m + 1, 3m] is optimal. Namely, the subspace
property (6)(7) is satisfied. Recall thatSi Aj = Si is equivalent
to Si being an invariant subspace ofAj.
Case 1:i ∈ [m].

• When j ∈ [tm + 1, (t + 1)m], j − tm 6= i, t ∈ {0, 1},
define B = {ea : aj = 1 − t, ai = 0} ∪ {ea + eb : aj +
bj = 1, ai = bi = 0, az = bz, ∀z 6= i, j}. Then it is easy
to see thatSi = span(Pi,0) = span(B). Moreover, each
vector in setB is an eigenvector ofAj, thereforeSi is an
invariant subspace ofAj.

• When j − m = i, Si = Vj,0 = span(Pi,0), so Si is an
eigenspace ofAj.

• When j ∈ [2m + 1, 3m], we can see that every vector
in Pi,0 is a vector inVj,0 = span(Pj,0) or in Vj,1 =
span(Pj,1), hence it is an eigenvector ofAj.

• When j = i, consider a vectorea ∈ Pi,0, then ai = 0.
And ea = (ea + eb) − eb wherebi = 1, bj = aj for all
j 6= i. Here bothea + eb and eb are eigenvectors ofAi.

ea Ai = (ea + eb)Ai − eb Ai

= λi,0(ea + eb) − λi,1eb

= (λi,0 − λi,1)eb + λi,0ea.

Because λi,0 6= λi,1, we get span{ea Ai, ea} =
span(ea, eb). HenceSi Ai + Si = span{ea, eb : ai =
0, bi = 1, aj = bj, ∀j 6= i} = F

l.



N1 N2 N3 N4 N5 N6
1st eigenspace e0 + e2 e0 + e1 e0 e0 e0 e0

of Ai e1 + e3 e2 + e3 e1 e2 e1 e2

2nd eigenspace e2 e1 e0 + e2 e0 + e1 e2 e1

of Ai e3 e3 e1 + e3 e2 + e3 e3 e3

e0 e0 e2 e1 e0 + e2 e0 + e1

Si e1 e2 e3 e3 e1 + e3 e2 + e3

Figure 2. (n=8,k=6,l=4) code. The first parity node is assumed to be the row sum, and the second parity is computed using coding matrices Ai. In order to
rebuild nodei, Si is multiplied to each surviving node. The first2m = 4 nodes have optimal access, and the lastm = 2 nodes have optimal update.

Case 2:i ∈ [2m + 1, 3m].

• When j = i − m or j = i − 2m, Si = span(Qi) is an
eigenspace ofAj.

• When j ∈ [tm + 1, (t + 1)m], and j 6= i − tm for t ∈
{0, 1}, defineD = {ea + eb : aj = bj = 1 − t, ai + bi =
1, az = bz, ∀z 6= i, j} ∪ {ea + eb + ec + ed : aj = bj =
0, cj = dj = 1, ai + bi = 1, ci + di = 1, az = bz =
cz = dz, ∀z 6= i, j}. We can see thatSi = span(Qi) =
span(D) and every vector inD is an eigenvector ofAj.

• When j ∈ [2m + 1, 3m], j 6= i. We can see thatQi =
{ea + eb : aj = bj = 0, ai + bi = 1, az = bz, ∀z 6= i, j} ∪
{ea + eb : aj = bj = 1, ai + bi = 1, az = bz, ∀z 6= i, j}.
Apparently, every vector inQi is a sum of two vectors
in Pj,0 or two vectors inPj,1. So Si = span(Qi) is an
invariant subspace ofAj.

• When j = i, consider anyea + eb ∈ Qi, where ai =
1, bi = 0, az = bz, ∀z 6= i. We have

(ea + eb)Ai = λi,1ea + λi,0eb.

Becauseλi,0 6= λi,1, we get span{(ea + eb)Ai, ea +
eb} = span{ea, eb}. Thus Si Ai + Si = span{ea, eb :
ai = 1, bi = 0, az = bz, ∀z 6= i} = F

l.

It should be noted that if we shorten the code and keep only
the first 2m systematic nodes in the code, then it is actually
equivalent to the code in [5]. The repairing of the first2m
nodes does not require computation within each remaining
node, since only standard bases are multiplied to the surviving
columns (e.g. Figure 2). We call such repairoptimal access.
It is shown in [18] that if a code has optimal access, then
the code has no more than2m nodes. On the other hand, the
shortened code with the lastm systematic nodes in the above
construction is equivalent to that of [3], [10], [16]. Sincethe
coding matricesAi, i ∈ [2m + 1, 3m] are all diagonal, every
information entry is included in onlyr + 1 entries in the code.
We say such a code hasoptimal update. In [18] it is proven
that an optimal-update code with diagonal coding matrices has
no more thanm nodes. Therefore, our code is a combination
of the longest optimal-access code and the longest optimal-
update code, which provides tradeoff among access, update,
and the code length. The shortening technique was also used
in [13] in order to get optimal-repair code with different code
rates.

In addition, if we try to extend an optimal-access codeC
with length 2m to a codeD with length k, so thatC is a

shortened code ofD, then the following theorem shows that
k = 3m is largest code length. Therefore, our construction is
longest in the sense of extendingC.

Theorem 3 Any extended code of an optimal-access code of
length2m will have no more than3m systematic nodes.

Proof: Let C be an optimal-access code of length2m. Let
D be an extended code ofC. By equivalently transforming the
coding matrices (see [18]), we can always assume the coding
matrices of the parities inD are

(

I · · · I I · · · I
A1 · · · A2m A2m+1 · · · Ak

)

.

Here the first2m column blocks corresponds to the coding
matrices ofC. First consider the codeC, that is, the first2m
nodes. IfC has optimal access, thenSi is the span ofl/2
standard basis, fori ∈ [2m]. Since there are2m systematic
nodes, on average eachez appears2m× l

2 ×
1
l = m times, for

z ∈ [0, l − 1]. We claim that eachez appears exactlym times.
Otherwise, there exists oneez that appears in{Si : i ∈ I},
for some |I| > m, I ⊂ [2m]. So | ∩i∈I Si| ≥ 1. However,
by [18] we know when|I| > m, | ∩i∈I Si| = 0. So every
ez, z ∈ [0, l − 1], must appear inm of the Si’s, say ez ∈ Si,
∀i ∈ J, |J| = m, J ⊂ [2m]. Again by [18] when|J| = m, we
have | ∩i∈J Si| = 1, so ∩i∈JSi = ez. So thesem subspaces
intersect only onez.

Now consider the extended codeD. Since everySi, i ∈ J, is
an invariant subspace ofAj, j ∈ [2m + 1, k] by the subspace
property, we know their intersection,ez is also an invariant
subspace ofAj. In other words,ez is an eigenvector ofAj.
This result is true for allz ∈ [0, l − 1]. Hence, we know the
standard basis are all the eigenvectors ofAj, j ∈ [2m + 1, k].
Equivalently,Aj are all diagonal. So the lastk − 2m nodes in
D are optimal update. By [18], there are onlym nodes that
are all optimal update. Sok ≤ 3m.

Next let us discuss about the finite field size of the code. In
order to make the code MDS, it is equivalent that we should be
able to recover from any two column erasures. In other words,
any 1 × 1 or 2 × 2 submatrices of the matrix (5) should be
invertible. Therefore, all eigenvaluesλi,s should be nonzero,
i ∈ [k], s ∈ {0, 1}. Moreover, the following matrix should be
invertible for all i 6= j:

[

I I
Ai Aj

]

.

Or equivalently,Ai − Aj should be invertible.



Let us first look at an example. Supposem = 2, i = 1, j = 2
(see Figure 2), thenA1 − A2 is








λ1,0 − λ2,0 λ2,1 − λ2,0 λ1,0 − λ1,1 0
0 λ1,0 − λ2,1 0 λ1,0 − λ1,1

0 0 λ1,1 − λ2,0 λ2,1 − λ2,0

0 0 0 λ1,1 − λ2,1









(8)
We can simply compute the determinant by expanding along
the first column and the last row. The remaining2 × 2
submatrix in the middle is diagonal:

[

λ1,0 − λ2,1 0
0 λ1,1 − λ2,0

]

(9)

Hence, the determinantdet(A1 − A2) is

(λ1,0 − λ2,0)(λ1,0 − λ2,1)(λ1,1 − λ2,0)(λ1,1 − λ2,1).

For another example, letm = 2, i = 1, j = 3, then A1 − A3

is








λ1,0 − λ3,0 0 λ1,0 − λ1,1 0
0 λ1,0 − λ3,0 0 λ1,0 − λ1,1

λ3,0 − λ3,1 0 λ1,1 − λ3,1 0
0 λ3,0 − λ3,1 0 λ1,1 − λ3,1









(10)
Since we can permutate rows and columns of a matrix and
not change its rank, the above matrix can be changed into:








λ1,0 − λ3,0 λ1,0 − λ1,1 0 0
λ3,0 − λ3,1 λ1,1 − λ3,1 0 0

0 0 λ1,0 − λ3,0 λ1,0 − λ1,1

0 0 λ3,0 − λ3,1 λ1,1 − λ3,1









.

(11)
And its determinant is

det(A1 − A3) = (λ1,0 − λ3,1)
2(λ3,0 − λ1,1)

2.

Now let us discuss in general the finite field size of the
code.

Construction 2 Let the elements of the code be overFq, with
q ≥ 2m + 1. Let c be a primitive element inFq and write
< i >:= i mod m. Assign the eigenvalues of the coding
matrices to be

λi,s =

{

c<i>+sm, i ∈ [2m]

c<i>+(1−s)m, i ∈ [2m + 1, 3m]
(12)

If we have an extra systematic column withA3m+1 = I (see
column N4 in Figure 1), we can use a field of size2m + 2
and simply modify the above construction by

λi,s =

{

c<i>+sm+1, i ∈ [2m]

c<i>+(1−s)m+1, i ∈ [2m + 1, 3m]

For example, whenm = 1, the coefficients in Figure 1 are
assigned using the above formula, where the field size is4
and c = 2. For another example, ifm = 2, we can use finite
field F5 and c = 2, then assign the eigenvalues to be

(λ1,0, . . . , λ6,0) = (1, 2, 1, 2, 4, 3),

(λ1,1, . . . , λ6,1) = (4, 3, 4, 3, 1, 2).

Theorem 4 The above construction guarantees that the con-
structed code is MDS and has optimal repair bandwidth. The
finite field size isq ≥ 2m + 1.

Proof: We claim that if we check any two indicesi 6=
j ∈ [3m], then the following conditions are necessary and
sufficient for Ai − Aj to be invertible. Assumer, s ∈ {0, 1}.

1) λi,s 6= λj,r, for any i 6= j mod m.
2) λi,s 6= λj,1−s, for i ∈ [m], j = i + m.
3) λi,s 6= λj,s, for i ∈ [2m], j ∈ [2m + 1, 3m], i = j

mod m.

If we have an extra systematic column withA3m+1 = I, then
Ai − I is invertible iff

4) λi,s 6= 1.

By the proof of Theorem 2 we already know that optimal
repair bandwidth is equivalent to

5) λi,0 6= λi,1.

It can be easily checked that the above conditions are satisfied
by Construction 2. Here we only prove condition 1 fori, j ∈
[m] and condition 2. The rest cases all follow similar ideas.
Without loss of generality we can assume{ei} is standard
basis, because the basis will not change the value ofdet(Ai −
Aj).

When i, j ∈ [m], Vi,0 = Qi, Vi,1 = Pi,1, and Vj,0 =
Qj, Vj,1 = Pi,1. So Vi,1, Vj,1 share the same eigenvectors
B = {ea : ai = aj = 1}. If we view each element inB
as an integer in[0, 2m − 1] (each vector inB is the binary
representation of an integer), we can sayAi, Aj both have
only one nonzero element in each row inB. On the other hand,
columns ofV−1

i , V−1
j correspond to the right eigenvectors of

Ai, Aj, respectively. And it is easy to show that they share
the right eigenvectorsC = {eT

a : ai = aj = 0}, where the
superscriptT means transpose. Hence,Ai, Aj both have only
one nonzero element in each column inC. To compute the
determinant ofAi − Aj, we can expand along rowsB and
columnsC. The remaining submatrix will be diagonal since
we already eliminated all the non-diagonal elements. Then it
is easy to verify condition 1. See (8)(9) for an example.

When i ∈ [m], j = i + m, Vi,0 = Qi, Vi,1 = Pi,1 andVj,0 =
Pi,0, Vj,1 = Qi. Therefore bothAi, Aj have nonzero elements
at the diagonal locations. AlsoAi has nonzero elements at
row Pi,0 and columnPi,1. Similarly Aj has nonzero elements
at rowPi,1 and columnPi,0. Let a = (0, . . . , 0, 1, 0, . . . , 0) be a
binary vector of lengthm and the only ’1’ is at locationi. And
let us viewe0, ea as the corresponding integers0, 2m−i. Then
we can see that rows{e0, ea} and columns{e0, ea} have only
four nonzero elements. We can permutate the rows/columns
of a matrix and not change its rank. Therefore move these
two rows/columns to rows/columns0, 1, and we get a block
diagonal matrix. Following the same procedure, we will get
block diagonal matrix, where each block is of size2× 2. And
the determinant is simple to compute. See (10)(11) for an
example.

We can see that the field sizeq is about2/3 of the number
of systematic nodes and is not a constant. Also the code has



parameters(n = 3m + 2, k = 3m, l = 2m). On the other
hand, the(n = m + 3, k = m + 1, l = 2m) code in [17] has
constant field of sizeq = 3. So the proposed code has longerk
but longer (actual) column lengthl log q as well. Nonetheless,
it may be possible to alter the structure ofAi’s a bit (for
example, do not requireAi to be diagonalizable) and obtain
a constant field size. And this will be one of our future work
directions.

IV. CODES WITH ARBITRARY NUMBER OF PARITIES

In this section, we will give constructions of codes with
arbitrary number of parity nodes. Our code will havel = rm

rows, k = (r + 1)m systematic nodes, andr parity nodes, for
any r ≥ 2, m ≥ 1.

SupposeAs,i is the coding matrix for parity nodek + s and
information nodei. From Section II, we assumeA1,i = I for
all i. In our construction, we are going to add the following
assumptions. EveryAs,i hasr distinct eigenvalues, each cor-
responding tol/r = rm−1 linearly independent eigenvectors,
for s ∈ [2, r]. Moreover, given an information nodei ∈ [k],
all matrices As,i, s ∈ [2, r], share the same eigenspaces
Vi,0, Vi,1, . . . , Vi,r−1. If these eigenspaces correspond to eigen-
values λi,0, λi,1, . . . , λi,r−1 for A2,i, then we assume they
correspond to eigenvaluesλ

s−1
i,0 , λ

s−1
i,1 , . . . , λ

s−1
i,r−1 for As,i. By

abuse of notations,Vi,u represents both the eigenspace and the
l/r× l matrix containingl/r independent eigenvectors. Under
these assumptions, it is easy to see that if we writeAs,i as






Vi,0
...

Vi,r−1







−1








λ
s−1
i,0 I

. . .

λ
s−1
i,r−1I















Vi,0
...

Vi,r−1






,

where the identity matrices are of sizelr ×
l
r , then As,i =

As−1
2,i , for all s ∈ [r]. Hence, we are going to writeAi = A2,i,

thusAs,i = As−1
i , and our construction will only focus on the

matrix Ai. As a result, thesubspace propertybecomes

Si = Si Aj, ∀j 6= i, j ∈ [k] (13)

Si + Si Ai + Si A
2
i + · · ·+ Si A

r−1
i = F

l (14)

Note that such choice of eigenvalues is not the unique way
to construct the matrices, but it guarantees that the code has
optimal repair bandwidth. Also, when the finite field size is
large enough, we can find appropriate values ofλi,u’s such that
the code is MDS. At last, since eachVi,u has dimensionl/r
and corresponds tol/r independent eigenvectors, we know
that any vector in the subspaceVi,u is an eigenvector ofAi.

Let {e0, e1, . . . , erm−1} be the standard basis ofF
l . And

we are going to use ther-ary expansion to represent the
index of a base. An indexa ∈ [0, rm − 1] is written as
a = (a1, a2, . . . , am), whereai is its i-th digit. For example,
when r = 3, m = 4, we havee5 = e(0,0,1,2). Define for
i ∈ [k], u ∈ [0, r − 1] the following sets of vectors:

Pi,u = {ea : ai = u},

Qi = {
r−1

∑
ai=0

ea : aj ∈ [0, r − 1], j 6= i}.

i Pi,0 Pi,1 Pi,2 Qi

e0 e3 e6 e0 + e3 + e6

1 e1 e4 e7 e1 + e4 + e7

e2 e5 e8 e2 + e5 + e8

e0 e1 e2 e0 + e1 + e2

2 e3 e4 e5 e3 + e4 + e5

e6 e7 e8 e6 + e7 + e8

Figure 3. Sets of vectors used to construct a code withr = 3 parities and
column lengthl = 32 = 9.

So Pi,u is the set of bases whose index isu in the i-th digit.
The sum inQi is over all ea such that thej-th digit of a is
some fixed value for allj 6= i, and thei-th digit varies in
[0, r − 1]. In other words, a vector inQi is the summation
of the corresponding bases inPi,u, ∀u. For example, when
r = 3, m = 2, P1,0 = {e(0,0), e(0,1), e(0,2)} = {e0, e1, e2},
P1,1 = {e3, e4, e5}, P1,2 = {e6, e7, e8}, andQ1 = {e0 + e3 +
e6, e1 + e4 + e7, e2 + e5 + e8}.

Notations: If a = (a1, a2, . . . , am) is anr-ary vector, denote
by ai(u) = (a1, . . . , ai−1, u, ai+1, . . . , am) the vector that is
the same asa except digiti, u ∈ [0, r− 1]. In the following, all
of the subscripti for setsPi,u, Qi and for digitai are computed
modulo m. For example, ifi ∈ [tm + 1, (t + 1)m] for some
integert, thenQi := Qi−tm.

Construction 3 The (n = (r + 1)m + r, k = (r + 1)m, l =
rm) code is constructed as follows. For information nodei ∈
[tm + 1, (t + 1)m], t ∈ [0, r − 1], the u-th eigenspace (u ∈
[0, r − 1]) of coding matrixAi and the rebuilding subspaceSi

are defined as

Vi,u = span(Pi,u), ∀u 6= t,

Vi,t = span(Qi),

Si = span(Pi,t).

For information nodei ∈ [rm + 1, (r + 1)m], the eigenspaces
and rebuilding subspaces are

Vi,u = span(Pi,u), ∀u ∈ [0, r − 1]

Si = span(Qi).

Example 5 Figure3 illustrated the subspacesPi,u, Qi for r = 3
parities and column lengthl = 9. Figure4 is a code constructed
from these subspaces and has8 systematic nodes. One can see
that if a node is erased, one can transmit only a subspace of
dimension3 to rebuild, which corresponds to only1/3 repair
bandwidth fraction. The three coding matrices for systematic
nodei areI, Ai, A2

i , for i ∈ [8].

The following theorem shows that the code indeed has
optimal repair bandwidth1/r.

Theorem 6 Construction3 has optimal repair bandwidth1/r
when rebuilding one systematic node.

Proof: By symmetry of the construction, we are only
going to show that the subspace property (13)(14) is satisfied
for i ∈ [1, m] ∪ [rm + 1, (r + 1)m]. Also Si Aj = Si implies
that Si has a basis that are all eigenvectors ofAj.



i 1 2 3 4 5 6 7 8
Vi,0 Q1 Q2 P1,0 P2,0 P1,0 P2,0 P1,0 P2,0

Vi,1 P1,1 P2,1 Q1 Q2 P1,1 P2,1 P1,1 P2,1

Vi,2 P1,2 P2,2 P1,2 P2,2 Q1 Q2 P1,2 P2,2

Si P1,0 P2,0 P1,1 P2,1 P1,2 P2,2 Q1 Q2

Figure 4. An (n = 11, k = 8, l = 9) code. SetsPi,u and Qi are listed
in Figure 3.Vi,u is the u-th eigenspace of the coding matrixAi. Si is the
subspace used to rebuild systematic nodei.

Case 1:i ∈ [1, m]. Before we begin to explore the different
cases, let us define the following sets of vectors

Bu = {ea : ai = 0, aj = u}, u ∈ [0, r − 1],

Ct = {
r−1

∑
aj=0

ea : ai = 0, az ∈ [0, r − 1], z 6= i, j}.

In the definition ofCt, the sum is over allea such that thei-th
digit of a is 0, the thez-th digit is some fixed value,z 6= i, j,
and thej-th digit varies in[0, r − 1]. Then one can see that

Bu ⊂ Pj,u, Ct ⊂ Qj.

• j ∈ [tm + 1, (t + 1)m], for some t ∈ [0, r − 1] and
j − tm 6= i. Then the eigenspaces ofAj are Vj,u =
span(Pj,u), u 6= t, and Vj,t = span(Qj). Then it is
clear thatSi = span(Pi,0) = span({Bu : u 6= t} ∪ Ct).
Also every vector ofBu, u 6= t and Ct is an eigenvector
of Aj.

• j ∈ [rm + 1, (r + 1)m], j − rm 6= i. The eigenspaces
of Aj are Vj,u = span(Pj,u), u ∈ [0, r − 1]. And Si =
span(Pi,0) = span{Bu : u ∈ [0, r− 1]} and every vector
in Bu, ∀u is an eigenvector ofAj.

• j − tm = i, t ∈ [1, r]. Then the first eigenspace ofAj is
Vj,0 = span(Pi,0) = Si.

• j = i. In this case we want to check (14) in the
subspace property. Suppose the distinct eigenvalues of
Ai are λ0, λ1, . . . , λr−1. Then the eigenvalues forAs

i
will be λ

s
0, λ

s
1, . . . , λ

s
r−1, for s ∈ [0, r − 1]. Notice that

Si = span(Pi,0) = span{eai(0) : ∀a ∈ Z
m
r } and

eai(0)As
i

= (
r−1

∑
u=0

eai(u) − eai(1) − · · · − eai(r−1))Ai

= λ
s
0

r−1

∑
u=0

eai(u) − λ
s
1eai(1) − · · · − λ

s
r−1eai(r−1)

= λ
s
0eai(0) +

r−1

∑
u=1

(λ
s
0 − λ

s
u)eai(u).

Writing the equations for alls ∈ [0, r − 1] in a matrix,

we get
















eai(0)

eai(0)Ai

eai(0)A2
i

...
eai(0)Ar−1

i

















= M











eai(0)

eai(1)

...
eai(r−1)











,

with

M =















1 0 · · · 0
λ0 λ0 − λ1 · · · λ0 − λr−1

λ
2
0 λ

2
0 − λ

2
1 · · · λ

2
0 − λ

2
r−1

...
...

...
λ

r−1
0 λ

r−1
0 − λ

r−1
1 · · · λ

r−1
0 − λ

r−1
r−1















.

After a sequence of elementary column operations,M
becomes the following Vandermonde matrix

M′ =















1 1 · · · 1
λ0 λ1 · · · λr−1

λ
2
0 λ

2
1 · · · λ

2
r−1

...
...

...
λ

r−1
0 λ

r−1
1 · · · λ

r−1
r−1















.

Since λi’s are distinct, we know M′

and hence M is non-singular. Therefore,
span{eai(0), eai(0)Ai, . . . , eai(0)Ar−1

i } =
span{eai(0), eai(1), . . . , eai(r−1)}. Since Si

contains eai(0) for all r-ary vector a, we know
Si + Si Ai + · · ·+ Si A

r−1
i = F

l.

Case 2:i ∈ [rm, (r + 1)m]. Again, we first define some sets
of vectors to help with our arguments.

B′
u = {

r−1

∑
ai=0

ea : aj = u, az ∈ [0, r − 1], z 6= i, j}

C′
t = {

r−1

∑
ai=0

r−1

∑
aj=0

ea : az ∈ [0, r − 1], z 6= i, j}.

Here the sum inB′
u has fixed values ofaj = u andaz, z 6= i, j,

and thei-th digit varies in[0, r − 1]. The sum inC′
t has fixed

values ofaz, z 6= i, j, and thei-th and j-th digit both vary in
[0, r − 1]. Then one can check that

B′
u ⊂ span(Pj,u), C′

t ⊂ span(Qj).

• j ∈ [tm + 1, (t + 1)m], t ∈ [0, r − 1], and j − tm 6=
i − rm. The eigenspaces ofAj are span(Pj,u), u 6= t
and span(Qj). And Si = span(Qi) = span({B′

u : u 6=
t} ∪ C′

u). We can see that every vector inB′
u, u 6= t and

C′
t is an eigenvector ofAj.

• j ∈ [rm + 1, (r + 1)m], j 6= i. The eigenspaces ofAj are
Pj,u, u ∈ [0, r − 1]. And Si = span(Qi) = span{B′

u :
u ∈ [0, r − 1]}. We can see that every vector ofB′

u is an
eigenvector ofAj.

• j− tm = i − rm, t ∈ [0, r − 1]. Then thet-th eigenspace
of Aj is span(Qi), which is equal toSi.



• j = i. Take∑
r−1
u=0 eai(u) ∈ Si for arbitrarya, then

r−1

∑
u=0

eai(u)As
i =

r−1

∑
u=0

λ
s
ueai(u).

Written in a matrix form, we have
















eai(0)

eai(0)Ai

eai(0)A2
i

...
eai(0)Ar−1

i

















=















1 1 · · · 1
λ0 λ1 · · · λr−1

λ
2
0 λ

2
1 · · · λ

2
r−1

...
...

...
λ

r−1
0 λ

r−1
1 · · · λ

r−1
r−1

























eai(0)

eai(1)

...
eai(r−1)











.

So similar to Case 1, we knowSi + Si Ai + . . . Si A
r−1
i

spans the entire spaceFl.

Again, this construction can be shortened to an optimal-
access code of lengthrm [5] and an optimal-update code of
lengthm [3], [10], [16].

The finite field size of this code can be bounded by the
following theorem. In the following, we do not assume that
the eigenvalue ofAs,i is thes-th power ofA2,i, andA1,i is not
necessarily identity. Hence, we only assume thatA1,i, . . . , Ar,i

share the same eigenspaces for alli.

Theorem 7 A finite field of sizekr−1rm−1 + 1 suffices for the
code to be MDS and optimal repair bandwidth. Herek = (r +
1)m.

Proof: Let {λ
(s)
i,j } be the j-th eigenvalue ofAs,i, i ∈

[k], j ∈ [0, r − 1], s ∈ [r]. In order to show that the code
is MDS, we need to check if allx × x submatrices of the
following matrix are invertible, for allx ∈ [1, r].











A1,1 A1,2 · · · A1,k

A2,1 A2,2 · · · A2,k
...

...
...

Ar,1 Ar,2 · · · Ar,k











Note that eachAs,i can be written asV−1
i Λs,iVi for some

diagonal matrixΛs,i, where the rows ofVi are eigenvectors
and the diagonal ofΛs,i are eigenvalues. SinceA1,i, . . . , Ar,i

share the same eigenvectorsVi, we can multiplyV−1
i on the

right of the i-th block column, and not change the rank of the
above matrix:

M =











V−1
1 Λ1,1 V−1

2 Λ1,2 · · · V−1
k Λ1,k

V−1
1 Λ2,1 V−1

2 Λ2,2 · · · V−1
k Λ2,k

...
...

...
V−1

1 Λr,1 V−1
2 Λr,2 · · · V−1

k Λr,k











.

Here all λ
(s)
i,j are unknowns in the finite fieldFq. We are

going to show that if we write the determinants of eachx × x
submatrix as a polynomial, and take the product of all these
polynomials, then it is an nonzero polynomial. Moreover, by
Combinatorial Nullstellensatz [1] we can find assignments of
the unknowns over a large enough finite field, such that this
polynomial is not zero. Then we are guaranteed to have all
the x × x submatrices invertible. In [1] it is proved that if the
degree of a polynomialf (x1, . . . , xs) is deg( f ) = ∑

s
i=1 ti,

and the coefficient of∏s
i=1 x

ti
i is nonzero, then a finite field

of sizemaxi{ti} is sufficient for an assignmentc1, . . . , cs such
that f (c1, . . . , cs) 6= 0.

By the symmetry of theλ(s)
i,j , we consider only the degree of

λ := λ
(1)
1,0 . We will find its maximum degree in the polynomial

of determinants. This unknown variable only appears in the
matrix

Λ1,1 =









λ
(1)
1,0 I

. . .

λ
(1)
1,r−1I









,

where I is the identity matrix of sizerm−1 × rm−1. Let B =
V−1

1 Λ1,1. Then we know thatλ appears only in the firstrm−1

columns of B. For the determinant of anyx × x submatrix
of M, only the ones containingB needs to be considered,
because we are only interested in the degree ofλ. Therefore,
there are(k−1

x−1)(
r−1
x−1) submatrices of sizex × x that hasλ in

its determinant, and its degree isrm−1 for each submatrix. So
the total degree ofλ is

rm−1
r

∑
x=1

(

k − 1

x − 1

)(

r − 1

x − 1

)

.

Moreover, we know from the proof of Theorem 6 that
optimal repair bandwidth is achieved for the first systematic
node iff the following matrix is invertible









λ
(1)
1,0 · · · λ

(1)
1,r−1

...
...

λ
(r)
1,0 · · · λ

(r)
1,r−1









Hence, we need to multiply its determinant to our polynomial.
The total degree ofλ is

1 + rm−1
r

∑
x=1

(

k − 1

x − 1

)(

r − 1

x − 1

)

= 1 + rm−1
r−1

∑
x=0

(

k − 1

x

)(

r − 1

x

)

< 1 + rm−1
r−1

∑
x=0

(k − 1)x

(

r − 1

x

)

= 1 + rm−1kr−1.

Hence the proof is completed.
We can see that in the above theorem, for high-rate codes

the field size is expositional in the number of systematic nodes.



But we believe that there is still a large space to improve this
bound.

V. CONCLUSIONS

In this paper, we presented a family of codes with param-
eters(n = (r + 1)m + r, k = (r + 1)m, l = rm) and they are
so far the longest high-rate MDS code with optimal repair.
The codes were constructed using eigenspaces of the coding
matrices, such that they satisfy the subspace property. This
property gives more insights on the structure of the codes,
and simplifies the proof of optimal repair.

If we require that the code rate approaches1, i.e., r being
a constant andm goes to infinity, then the column lengthl
is exponential in the code lengthk. However, if we require
the code rate to be roughly a constant fraction, i.e.,m being
a constant andr goes to infinity, thenl is polynomial in k.
Therefore, depending on the application, we can see a tradeoff
between the code rate and the code length.

It is still an open problem what is the longest optimal-repair
code one can build given the column lengthl. Also, the bound
of the finite field size used for the codes may not be tight
enough. Unlike the constructions in this paper, the field size
may be reduced when we assume that the coding matrices do
not have eigenvalues or eigenvectors (are not diagonalizable).
These are our future work directions.
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