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Abstract—MDS codes are erasure-correcting codes that can 1, we show an MDS code witdh systematic nodes; = 2
correct the maximum number of erasures given the number of parity nodes, and column length= 2. One can check that
redundancy or parity symbols. If an MDS code hasr parities g code can correct any two erasures, therefore it is an MDS
and no more than r erasures occur, then by transmitting all . .
the remaining data in the code one can recover the original code_. In order to repa'r a_ny Syste_mat_lc node, (_in'{y - 1/_2
information. However, it was shown that in order to recover a fraction of the remaining information is transmitted. Tthis
single symbol erasure, only a fraction ofl/r of the information  code has optimal repair.
needs to be transmitted. This fraction is called therepair In [12]-[14], [20], [21] codes achieving the repair band-
bandwidth (fraction). Explicit code constructions were given in width lower bound were studied where the number of system-

previous works. If we view each symbol in the code as a vector _,. . .
or a column, then the code forms a 2D array and such codes atic nodes is less than the number of parity nodes (low code

are especially widely used in storage systems. In this papewe rate). For arbitrary code rate, [6], [15] proved that the éow
ask the following question: given the length of the columr, can bound is asymptotically achievable when the column lerigth

we construct high-rate MDS array codes with optimal repair goes to infinity. And [3]-[5], [9], [10], [16], [17], [19] stdied
bandwidth of 1/r, whose code length is as long as possible? In¢qqeg with more systematic nodes than parity nodes (higé cod
this paper, we give code constructions such that the code Igth - . .
is (r+1)log, I. rate) a_nd finite/, and aph|eved th(_a lower bound of the repair
bandwidth. If we are interested in thede length, i.e., the
|. INTRODUCTION number of systematic nodes givénlow-rate codes have a
MDS (maximum distance separable) codes are optimaiear code lengthl + 1 [13], [14]; on the other hand, high-
error-correcting codes in the sense that they have thedargate constructions are relatively short. For example, ssgp
minimum distance given the number of parity symbols. that we have 2 parity nodes, then the number of systematic
each symbol is a vector or a column, we call such a code aades is onlylog! in all of the constructions, except for [5]
MDS array code (e.g. [2], [7], [11], [22], [23]). In (distniibed) it is 2log!. In [18] it is shown that an upper bound for the
storage systems, each column is usually stored in a differende length isc < 1 -+ l(z}z)v but the tightness of this bound
disk, and MDS array codes are widely used to protect daganot known. It is obvious that there is a big gap between this
against erasures due to their error correction ability avd | upper bound and the constructed codes.
computational complexity. In this paper, we call each sylnbo The main contribution of this paper is to construct codes
a column or a node, and the column length, or the vector siagth 2 parity nodes an®log! systematic nodes. The code
of a symbol, is denoted b uses a finite field of siz& + 2log/. Moreover, we will give
If an MDS code has parities, then it can correct up to a general construction of high-rate codes wth+ 1) log, !
erasures of entire columns. In this paper, we not only woud§stematic nodes for arbitrary number of paritiedt turns
like to recover any erasurese < r, but also care about theout that this construction is a combination of the code in [5]
efficiency in recovery: what is the fraction of the remainingnd also [3], [10], [16].
data transmitted in order to correcterasures? We call this  The rest of the paper is organized as follows: in Section
fraction therepair bandwidth (fraction). For example, it = r 11 we will formally introduce the repair bandwidth and the
erasures happen, it is obvious that we have to transmit all@de length problem. In Section 11l codes with 2 parity nodes
the remaining information, therefore, the fractionlisFor are constructed, and we show that the code lengthldg /.
e = 1 erasure it was shown in [8] (which also formulated th&eneralized code constructions for arbitrary number otipar
repair problem) that this fraction is actually lowered bded are given in Section IV and finally we conclude in Section V.
by1/r.1f e < r symbols are erased and we repair them exactly
as they were, this fraction is lower bounded &y [17]. If Il. PROBLEM SETTINGS
this bound is achieved for some code, we say it has optimalAn (n,k,I) MDS array code is an(n — k)-erasure-
repair. Since the repair of information is much more crucialorrecting code such that each symbol is a column of length
than redundancy, and we study mainly high-rate codes, weThe number of systematic symbols ksand the number
will focus on the optimal repair of information or systeneati of parity symbols isr = n — k. We call each symbol a
nodes. Moreover, since single erasure is the most comnmiumn or a node, ané the code length. We assume that
scenario in practice, we assume- 1. For example, in Figure the code is systematic, hence the fiksnhodes of the code



N1 | N2 | N3 | N4 P1 P2

a b c d | a+b+c+d | 2a+w+2b+3c+d
w | x|y |z |wt+tx+y+z|3w+b+3x+2y+z
Figure1l. (n=6,k=4,I=2) MDS code over finite fieltf; generated by primitive polynomial> + x + 1. Here2 is a primitive element of the field. The first
4 nodes are systematic and the lasire parities. To repaiN1 transmit the first row from every remaining node. To repsi transmit the second row. To

repair N3 transmit the sum of both rows. And to repa4 transmit the sum of the first row artitimes the second row from nodéél, N2, N3, P1, and
the sum of the first row and times the second row from nod&.

are information or systematic nodes, and the tagbdes are the sum is actually the direct sum of vector spaces. Morgover
parity or redundancy nodes. we know that eacl$; ,; has full rankl /7.

Suppose the columns of the code &g C,,...,C,, each We claim that (1) (2) are necessary and sufficient conditions
being a column vector ifF!, for some finite fieldF. We for optimal repair. The sketch of the proof is as follows:
assume that for parity node+ 7, information nodej, the suppose the code has optimal repair bandwidth, then we need
coding matrix is A;; of sizel x I, i € [r], j € [k]. And the to transmit/ /r elements from each surviving column. Suppose

parity columns are computed as we transmitS; ;C; from a systematic nod¢ # i,j € [k],
. and S; 1 1Crar = Y5 1S +A1:C. from a parity node
Crsi = Z A;;Cj, k+t € [k+1,k+r]. Our goal is to recove€; and cancel

j=1 out all C;, j # i,j € [k]. In order to cancel ou€;, (1) must

be satisfied. In order to solv;, all equations related t@;
Thust have full rank, so (2) is satisfied. One the other hand,
if (1) (2) are satisfied, one can transr§jt;C; from each node
1 2 0 30 1 0 j, j # i,j € [n] and optimally repair the nodé Similar
( 0 3 )( 1 3 )( 0 2 )( 0 1 ) . interference alignment technique was first introduced in [6
[15] for the repair problem. Also, [13] was the first to foriyal
Here the finite field isF, generated by? + x + 1. In our prove similar conditions.
constructions, we require that; ; = I for all j € [k]. Hence It is shown in [18] that we can further simplify our repair
the first parity is the row sum of the information array. Evestrategy of node and assums,; ; = S;, for all j # i,j € [n]
though this assumption is not necessarily true for an ayitr by equivalent transformation of the coding matrices (phipa
linear MDS array code, it can be shown that any linear cosdth an exception of the strategy of one node). Then the
can be equivalently transformed into one with such codirsmbspace propertybecomes for any # i,j € [k],t € [r],
matrices [18]. e A .
. . . Si = SiAy. 3)
Suppose a code has optimal repair for any systematic node
i,i € [k], meaning only a fraction of /r data is transmitted in Again the equality means equality of row spans. And the sum
order to repair it. When a systematic nodis erased, we are Of subspaces satisfies

for all i € [r]. For example, in Figure 1, the coding matrice
areA;; =Iforallje[k]andAy;, j=1,2,3,4 are

going to use sizé/r x I matricesS; ;, j # i,j € [n], to repair r .

the node: From a surviving node we are going to compute Z SiApi =TF. (4)
and transmitS; ;C;, which is only1/r of the information in , ) ) t.zl, ) . .
this node. Notice that if (3) is satisfied, we can say tifatis an invariant

subspace ofA;; (multiplied on the left) for all parity nodes
k+t and all information nodeg# i. If A; ; is diagonalizable
and had linearly independent left eigenvectors, an invariant
subspace has a set of basis which are all eigenvectofs of

: . : : - As a result, our goal is to find matrice% ; and their invariant
following subspace property There exist matrices; ;, ) . ] L
ijc [n? all vfith sifelr;r >2/l such that for allj 52]1]]72 subspaces. And by using sufficiently large finite field and
[}{] f e [Vj ' ’ varying the eigenvalues of the coding matrices, we are able

to ensure that the codes are MDS. Therefore, we will first

Notations: In order to simplify the notations, we write
Sij and S;x,+A;; both as matrices of sizé/r x | and the
subspaces of their row spans.

Optimal repair of a systematic nodeas equivalent to the

Sij = SikttAs; (1) focus on finding eigenvectors of the coding matrices and then
where the equality is defined on the row spans instead of tigcuss about the eigenvalues.
matrices. And For example, in Figure 1, the matrics i = 1,2,3 are
r
Y SifsiAri =TF. 2 (1,0),(0,1),(1,1).
t=1

One can check that the subspace property (3)(4) is satisfied f
Here the sum of two subspacesB of IF! is defined asA + i € [3]. For instance, sincé; = (1,1) is an eigenvector for
B={a+b:ae Ab e B}. Obviously, the dimension of A;;, t =1,2,j=1,2,4, we haveS; = S3A; ;. And it is easy
each subspacs; ;,;A;; is no more thari/r, and the sum of to check thatS; & S3A»3 = span(1,1) @ span(3,2) = F2.

r such subspaces has dimension no more tharhis means For the nodeN4, the matricesS,'s are not equal. In fact
these subspaces intersect only on the zero vector. Therefoy ; = (1,2) for j=1,2,3,5andSs6 = (1,3).



IIl. CODE CONSTRUCTIONS WITHZ2 PARITIES

For example, ifm = 2,i = 1, thenPy g = {eo),€01)} =

In this section, we are going to construct codes with columifo €1}, Pra = {5’(1,0)/3(1,1)} = {ez,e3}, andQ; = {e( ) +

length! = 2™, k = 3m systematic nodes, and= 2 parity

e0) €01 +eant = {eo+exe1 +e3}. Notation: The

nodes. Heren is some integer. As we showed in the previougubscripti for setsP; ,, Q; anda; (the i-th digit of vectora)

section, we can assume the coding matrices are

I I
(A 0 4) ©)
whereA;; = I and A, ; = A; correspond to parityt and?2

respectively.
Now we only need to find coding matriced;’s, and
subspaces;’s. For now we only care about eigenvectorsff

not its eigenvalues because eigenvectors determine tiarrep 2) Fori e [m + 1,2m], Viyg = span(P;g), Vi
bandwidth. Later we will show that using a large enough finite ' ' ’
field, we can choose the eigenvalues such that the code i8) Fori ¢ [2m + 1,3m]

indeed MDS. In the following construction, for anye [k],

A; has two different eigenvalues o, A; 1, each corresponding

to /2 = 2"~ eigenvectors. Denote these eigenvectors as

Uil
Ui2
Vip = :
Vi1/2
for eigenvalue);, and
Uil/24+1
Uil/242
Vip = :
Uil

for eigenvalue); ;. Therefore,A; can be computed as

= () () (%)
Al

By abuse of notations, we also usk, V;; to rep-
resent the eigenspace corresponding Ay, A;1, respec-
tiVG'y. Namely, Vi,O = span{vi,l,. "/Ui,l/Z} and Vi,l =
span{v;;/a41,---,0i1}

When a systematic nodeis erased; € [k], we are going
to useS; to rebuild it. Thesubspace propertybecomes

Vi #i,j€ [k,
S;+S;A; =TF.

Vio
Vit

Vio
Vit

NI~

S, = SiAj, (6)

()

In the following constructiong,, a € [0, — 1], are some

basis ofF, for example, one can think of them as the standard ®
basis. The subscript is represented by its binary expansion,

a = (ay,ay,...,ay). For example, ifl = 16,m = 4,a = 5,
thenes = €(0,1,0,1) anda; = a3 =0,ap = a4 = 1.

In order to construct the code, we first defiBiesets of
vectors fori € [m]:

Pi,O {ea a; = O},
Pi,l = {Ea ap = 1},
Qi = {ea+eb:ai+bl~:1,aj:bj,v]'7£i}.

is written modulom. For example, ifi € [tm + 1, (t + 1)m]
for some integet, thenP; , :== P;_, .

Construction1 The(n = 3m + 2,k = 3m,l = 2™) code has
coding matrices\;, i € [k|, each with two distinct eigenvalues,
and eigenvectorg; o, V; 1. When nodeé is erased, we are going
to uses,; to rebuild. We construct the code as follows:
1) Fori € [m], Vo = span(Q;), V;1 = span(P;1), S; =
span(P;).

span(Q;), S; = span(P; ;).

» Vio = span(Pig), Via
span(P; 1), S; = span(Q;).

Example 1 Deleting the node N4, Figuré is a code using

Construction1 andl 2. Another example of = 4 is

shown in Figure2. One can checK6) holds. For instance,

S = span{eg,eq} span{eg + e1,e1} is an invariant

subspace oA,. S0S; = S1A,. If the two eigenvalues oA ;

are distinct, it is easy to show th&t® S;A; = F*, Vi € [6].

The above example shows that fer= 1, 2, the constructed
code has optimal repair. It is true in general, as the folhgi
theorem suggests.

Theorem 2 Constructiornl is a code with optimal repair band-
width1/2 for rebuilding any systematic node.

Proof: By symmetry of the first two cases in the construc-
tion, we are only going to show that the rebuilding of node
i, i € [m]U[2m+1,3m] is optimal. Namely, the subspace
property (6)(7) is satisfied. Recall thgtA; = S; is equivalent
to S; being an invariant subspace 4f.

Case 1i € [m].

e Whenj € [tm+1,(t+ 1)m],j—tm # it € {0,1},
defineB = {e, : aj=1—ta = 0} U{es+ep: aj+
bj=1,a;=b;=0,a; = b;,Vz #1i,j}. Then it is easy
to see that5; = span(P; ) = span(B). Moreover, each
vector in setB is an eigenvector ofi;, therefores; is an
invariant subspace of;.

Whenj—m =i, S; = V;o = span(P;p), S0 S; is an
eigenspace ofi;.

Whenj € [2m +1,3m], we can see that every vector
in P;g is a vector inV;o = span(P;o) or in V;; =
span(P; 1), hence it is an eigenvector of;.

Whenj = i, consider a vectoe, € P;, thena; = 0.
And e; = (eq +¢p) — e, whereb; = 1, b; = a; for all

j # i. Here bothe, + ¢, ande;, are eigenvectors of;.

eaAj = (eatep)A;j —epA;
= Ajoleatep) —Aigep
= (Mg —Aip)ep + Aigea.
Because A\;y # A;1, we getspan{e;A; e} =

span(eg, e;). HenceS;A; + S; = span{eg, e :
O,bi = 1,11]- = b],VJ 7& l} = IFZ.

aj



N1 N2 N3 N4 N5 N6
1st eigenspace ey +er | eg + €1 € e eo eo
of A; e1+e3 | eo+e3 e1 e eq e
2nd eigenspace e; e1 epter | eg+er e e1
of A; e3 e3 e1+e3 | epte3 e3 e3

€o o e e1 eo+ex | eg+eq

S; e1 ey es3 e3 e1+e3 | extes

Figure 2. (n=8,k=6,l=4) code. The first parity node is assumed to kertfiv sum, and the second parity is computed using codingaeatd;. In order to
rebuild nodei, S; is multiplied to each surviving node. The fidt: = 4 nodes have optimal access, and the tast 2 nodes have optimal update.

Case 2i € [2m +1,3m]. shortened code dP, then the following theorem shows that
e Whenj = i—morj=i—2m,S; = span(Q;) is an k = 3m is largest code length. Therefore, our construction is
eigenspace Of ;. longest in the sense of extendidg
« Whenj € [tm+1,(t+1)m], andj # i —tm for t € Theorem 3 Any extended code of an optimal-access code of
{0,1}, defineD = {e; + e, :aj =b;j =1—t,a;+b; = jengtham will have no more thaBm systematic nodes.

1,,12:bz,vz#i,j}u{ea+eb+ec—|—ed:a]-:b]-: .
O =di =La+b =1c+d; = La, = b Proof: Let C be an optimal-access code of len@th. Let

¢, = d,,Vz #i,j}. We can see tha$; = span(Q;) = D b_e an ext_ended code 6f By equivalently transforming the _
span(D) and every vector itD is an eigenvector oft;. coding matrices (see [18]), we can always assume the coding

« Whenj € [2m+1,3m],j # i. We can see thaD; = matrices of the parities if® are
{ea+eh:a]-:bj:O,ai+bi:1,az:bZ,Vz;«éi,j}‘U | I I I
{eﬂ+eb:a]-:b]-:1,ai+bi:1,aZ:bZ,‘v’zyéz,]}. Ay oo Aoy Ao - Ap )T

Apparently, every vector irQ; is a sum of two vectors . .
in P, or two vectors inPj;. S0 S; = span(Q;) is an Here the first2m column blocks corresponds to the coding

invariant subspace of; ’ matrices ofC. First consider the codé, that is, the firs2m

: ; ) d IfC has optimal access, the$} is the span ofl /2

« Whenj = i, consider any, + ¢, € Q;, whereq; = NOUES. as op >S, P :
1,b; = 0,a, = by, ¥z # i. We have standard basis, fof € [2m]. Since there ar@m systematic
nodes, on average eaghappear@m x % X % = m times, for

(ea +ep)A;i = Ajreqa + Ajpep. z € [0,1 — 1]. We claim that each, appears exactly: times.

Otherwise, there exists ong that appears i{S; : i € I},
Becauseliy # Aj1, we getspan{(e; + ep)Aiea + for some|l| > m,I C [2m]. So | N;c; S;| > 1. However,
ey} = span{eq,e}. Thus S;A; +S; = span{es, ey : by [18] we know when|I| > m, | Nic; Si| = 0. So every
a; =1,b; = 0,a, = b;,Vz # i} = F.. ez, z € [0,1 — 1], must appear inn of the S;’s, saye, € S;,
m Vie], |J]| =m, ] C [2m]. Again by [18] when|]| = m, we
It should be noted that if we shorten the code and keep orlgve | N;c; S;| = 1, soN;e;S; = e;. So thesem subspaces
the first2m systematic nodes in the code, then it is actualiytersect only ore,.
equivalent to the code in [5]. The repairing of the figst Now consider the extended co@e Since even;,i € |, is
nodes does not require computation within each remainiag invariant subspace of;, j € [2m +1,k| by the subspace
node, since only standard bases are multiplied to the sogviv property, we know their intersectiom; is also an invariant
columns (e.g. Figure 2). We call such repaptimal access. subspace of4;. In other wordse; is an eigenvector of4;.
It is shown in [18] that if a code has optimal access, thehhis result is true for alk € [0,/ — 1]. Hence, we know the
the code has no more th@&m nodes. On the other hand, thestandard basis are all the eigenvectorsdef j € [2m + 1, k|.
shortened code with the last systematic nodes in the aboveEquivalently,A; are all diagonal. So the lakt—2m nodes in
construction is equivalent to that of [3], [10], [16]. Sintee D are optimal update. By [18], there are onty nodes that
coding matricesA;, i € [2m + 1,3m] are all diagonal, every are all optimal update. Sb < 3m. [ |
information entry is included in only+ 1 entries in the code.  Next let us discuss about the finite field size of the code. In
We say such a code haptimal update. In [18] it is proven order to make the code MDS, it is equivalent that we should be
that an optimal-update code with diagonal coding matri@es hable to recover from any two column erasures. In other words,
no more thann nodes. Therefore, our code is a combinatioany 1 x 1 or 2 x 2 submatrices of the matrix (5) should be
of the longest optimal-access code and the longest optimialertible. Therefore, all eigenvalue ; should be nonzero,
update code, which provides tradeoff among access, update, [k],s € {0,1}. Moreover, the following matrix should be
and the code length. The shortening technique was also ugaartible for alli # j:

in [13] in order to get optimal-repair code with differentd= I
rates. [ A A } .
In addition, if we try to extend an optimal-access cdtle o

with length 2m to a codeD with lengthk, so thatC is a Or equivalently,A; — A; should be invertible.



Let us first look at an example. Suppose=2,i =1, =2 Theorem4 The above construction guarantees that the con-

(see Figure 2), thed; — A, is structed code is MDS and has optimal repair bandwidth. The
Mo —Azo Ast—Asg Ao —Ars 0 finite field size is > 2m + 1.
0 Ao — A1 0 Ao — A1 Proof: We claim that if we check any two indices##
0 0 A1 —Az20 Az1—Azp j € [3m], then the following conditions are necessary and
0 0 0 M1 —A21 sufficient for A; — A; to be invertible. Assume,s € {0,1}.

1) Ais # Ajp, foranyi #j mod m.
2) /\i,s 75 )\j,l—s’ fori e [Wl},] =1i-+m.
3) Ais # Ajs, fori € 2m],j € 2m+1,3m], i = j

We can simply compute the determinant by expanding along
the first column and the last row. The remainidgx 2
submatrix in the middle is diagonal:

mod m.
Ao — A2 0 9) If we have an extra systematic column withy,, .1 = I, then
0 A1 —Az0 A; — I is invertible iff
Hence, the determinantet(A; — Ay) is 4) A # 1.
(Ao — A20) (A1 — Aa1) (At — Azg)(Ars — Ass). By the proof of Theorem 2 we already know that optimal

repair bandwidth is equivalent to
For another example, let = 2,i =1,j = 3, thenA; — A3 5) Aig # Aiq.

'S It can be easily checked that the above conditions are satisfi

Ao —A30 0 Ao — A 0 by Construction 2. Here we only prove condition 1 fpf €
0 Ao —As0 0 Ao — Mg [m] and condition 2. The rest cases all follow similar ideas.
Azo —Azq 0 AMi—Azq 0 Without loss of generality we can assunfe } is standard
0 Az0 — Az 0 A1 =231 basis, because the basis will not change the valuket{fA; —
. A,
Since we can permutate rows and columns of a matrix an .
not change its Fank the above matrix can be changed into; d\Nhen bj € [ml, Vio = QiVix = P, and Vip =
' Qj, Vi1 = Pip. So Vjy, V1 share the same eigenvectors
Ao —Az0 Ao—A1n 0 0 B = {e; : a; = a; = 1}. If we view each element i
Azp—Az1 A1 — Az 0 0 as an integer if0,2™ — 1] (each vector inB is the binary
0 0 Mo—Azo Ao—Ag | representation of an integer), we can sdy A; both have
0 0 A3o—Az1 A1 —Asn only one nonzero element in each ronANON the other hand,
(11) columns ofV;?, Vj‘1 correspond to the right eigenvectors of
And its determinant is Aj;, Aj, respectively. And it is easy to show that they share
det(Ay — Az) = (A1 — A31)2(Az0 — A1) the right eigenvector€ = {e! : a; = a; = 0}, where the

_ _ o _ superscriptl’ means transpose. Henc#;, A; both have only
Now |et us d|SCUSS n general the f|n|te f|e|d Size Of thgne nonzero element in each C(ﬂumn@_‘] To Compute the
code. determinant ofA; — A;, we can expand along row8 and
Construction 2 Let the elements of the code be oWy, with columnsC. The remaining submatrix will be diagonal since
q > 2m+ 1. Letc be a primitive element i, and write We already eliminated all the non-diagonal elements. Then i
< i >:= i mod m. Assign the eigenvalues of the codinds €asy to verify condition 1. See (8)(9) for an example.

matrices to be Wheni € [m],j=i+m, Vig=Q;, Vi1 =Py andV,o =
c<i>sm i € 2m] Pio, Via = Q;. Theref(_)re bothA;, A; have nonzero elements
Aig { <A [om 41, 3m] (12) at the diagonal locations. Als@l; has nonzero elements at

row P;o and columnP; ;. Similarly A; has nonzero elements
If we have an extra systematic column wity,, ;1 = I (see atrowP;; and columnP; . Leta = (0,...,0,1,0,...,0) be a
column N4 in Figure 1), we can use a field of sizen +2 binary vector of lengtw: and the only '1’ is at location. And

and simply modify the above construction by let us viewey, e, as the corresponding integed2™ . Then
o<i>+smtl i € [2m] we can see that rowe, e;} and columns{eg, e, } have only
Aig = { c<>HA=S)mHL e [2m + 1, 3m] four nonzero elements. We can permutate the rows/columns

of a matrix and not change its rank. Therefore move these

For example, whenn = 1, the coefficients in Figure 1 aretwo rows/columns to rows/columr 1, and we get a block

assigned using the above formula, where the field siz¢ isdiagonal matrix. Following the same procedure, we will get

andc = 2. For another example, iz = 2, we can use finite block diagonal matrix, where each block is of size 2. And

field F5 andc = 2, then assign the eigenvalues to be the determinant is simple to compute. See (10)(11) for an

. example. ]

(Ar0,---,460) = (1,2,1,2,4,3), We can see that the field sizeis about2/3 of the number

(M- A61) = (4,3,4,3,1,2). of systematic nodes and is not a constant. Also the code has



parametern = 3m + 2,k = 3m,l = 2™). On the other | Pip | Pia | Pip Qi

hand, the(n = m + 3,k = m + 1,1 = 2™) code in [17] has eo | €3 | e | e te3+ e

constant field of sizg = 3. So the proposed code has longer 1] e ey | €7 | extegtey

but longer (actual) column lengfHog g as well. Nonetheless, €2 | €5 | es | eptes+eg

it may be possible to alter the structure df’'s a bit (for e | € e | egtep+e

example, do not requirél; to be diagonalizable) and obtain 2| e3 | es | €5 | e3testes

a constant field size. And this will be one of our future work e | €7 | es | e t+e7+eg

directions. Figure 3. Sets of vectors used to construct a code with 3 parities and

column length! = 32 = 9.
IV. CoODES WITHARBITRARY NUMBER OF PARITIES g

In this section, we will give constructions of codes with

arbitrary number of parity nodes. Our code will have- ™

So P, is the set of bases whose index:isn the i-th digit.

rows,k = (r + 1)m systematic nodes, andparity nodes, for The sum inQ; is over alle, such that the-th digit of a is

anyr > 2, m>1.
SupposeA; ; is the coding matrix for parity node+ s and
information node. From Section Il, we assumé; ; = I for

some fixed value for alj # i, and thei-th digit varies in
[0, —1]. In other words, a vector irQ; is the summation
of the corresponding bases i ,, Vu. For example, when

all i. In our construction, we are going to add the following = 3,m = 2, P1g = {e(g0) ¢(0,1)€02)} = {eo €1 €2},
assumptions. Everyl,; hasr distinct eigenvalues, each cor-P; ; = {es, eq,e5}, P1o = {eg,€7,e3}, andQq = {eg +e3 +
responding td /r = "~ linearly independent eigenvectorseg, eq + e4 + e7,e5 + €5 + egh.

for s € [2,r]. Moreover, given an information nodec [k], Notations: If a = (ay,ay, ..., an) is anr-ary vector, denote
all matrices A;;, s € [2,7], share the same eigenspacesy a;(u) = (ay,...,a;_1,4,a;11,-..,a,) the vector that is
Vio, Vi1, .., Viy_1. If these eigenspaces correspond to eigethe same as except digiti, u € [0,7 — 1]. In the following, all
values Ajo,Ajq, ..., Ajy—1 for Ay;, then we assume theyof the subscript for setsP; ,, Q; and for digita; are computed
correspond to eigenvalueé/al, /\f’;l,...,/\iﬂl for A;;. By modulom. For example, ifi € [tm + 1, (t + 1)m] for some
abuse of notationd/; , represents both the eigenspace and thetegert, thenQ; := Q;_ .

I/r x I matrix containing /r independent eigenvectors. U”debonstructionS The(n = (r+V)m+rk = (r+1)m,1 =

these assumptions, it is easy to see that if we whilg as  ,m code s constructed as follows. For information néde
1

Vio )‘?511 Vio [tm+1,(t+1)m], t € [0,r — 1], theu-th eigenspaceu( €
! ’ ] [0, — 1]) of coding matrixA; and the rebuilding subspaég
: ) : ’ are defined as
Vi,r—l AT Vi,r—l
ir—1 Vi,u = span(Pl-,u),Vu 75 £
where the identity matrices are of sizex L, then A;; = Vi, = span(Q))
s—1 i itA . — . ! ’
Ay foralls € [r]. Hence, we are going to writd; = A, ;, S; = span(P).

thusA;; = Affl, and our construction will only focus on the
matrix A;. As a result, thesubspace propertybecomes

Si = SiALYj #1,j € [K] (13)
Si+SiAi+SiAT -+ SAT = F (14) Vi span(P;y), Vu € [0,7 —1]

Note that such choice of eigenvalues is not the unique way Si span(Q;)-
to construct the matrices, but it guarantees that the code lxample 5 Figure3 illustrated the subspaces,, Q; forr = 3
optimal repair bandwidth. Also, when the finite field size iparities and column length= 9. Figure4 is a code constructed
large enough, we can find appropriate value3 gfs such that from these subspaces and Basystematic nodes. One can see
the code is MDS. At last, since eadh, has dimensiori/r that if a node is erased, one can transmit only a subspace of
and corresponds td/r independent eigenvectors, we knowdimensior3 to rebuild, which corresponds to only 3 repair
that any vector in the subspa®g, is an eigenvector ofl;.  bandwidth fraction. The three coding matrices for systénat
Let {eg,e1,...,e,m 1} be the standard basis & . And nodei arel, A;, A2, fori € [8].
we are going to use the-ary expansion to represent the
index of a base. An index € [0,7" — 1] is written as
a = (ay,ay,...,ay), Wherea; is its i-th digit. For example,
whenr = 3,m = 4, we havees = ¢(q;7). Define for
i € [k],u € [0,r — 1] the following sets of vectors:

For information nodé € [rm + 1, (r + 1)m], the eigenspaces
and rebuilding subspaces are

The following theorem shows that the code indeed has
optimal repair bandwidtA /.

Theorem 6 Construction3 has optimal repair bandwidtty r
when rebuilding one systematic node.

Proof: By symmetry of the construction, we are only

Py = A{ea:aj=uj, . are oy
1 going to show that the subspace property (13)(14) is satisfie

Q = {Y earael0r—1),j#i}. fori € [1,m]U[rm+1,(r +1)m]. Also S;A; = S; implies
2,—0 thatS; has a basis that are all eigenvectorsAgf



i | 1] 2] 3] 4]5] 6] 7] 8 we get
Vio | Q1 | Q2 | Pro | Poo | Pio | Poo | Pro | Poo
Vian [ Pia | Poa | Q1 | Qo | Pia | Poa | Pia | Pop eﬂi(o}y ©
Vio | Prp | Pap | Pro | Pap | Q1 | Qo | Pip | Prp Cai(0)5 €ay)
Si [ Pro| Poo | Pra | Poa | Pro|Pop| Q1 | Q2 €a;(0) A =M ,
Figure4. An (n = 11,k = 8,1 = 9) code. SetsP;, and Q; are listed :
in Figure 3.V, is the u-th eigenspace of the coding matrik;. S; is the e Ar—l €a;(r—1)
subspace used to rebuild systematic nade a;(0) 7%
with
1 0 . 0
Case 1i € [1,m]. Before we begin to explore the different Ag Ao — M e A=A
cases, let us define the following sets of vectors M= A3 A3 — A% e AR—AZ
By = {ea:a;=0,aj=u},ucl0r—1], )Lgfl )Lgfl _ )Lgfl . /\6*1 — /\;j
C = {i eq:ia;=0,a, € [0,r— 1],z #1,j}. After a sequence of elementary column operatiovis,
' ’ ’ ’ becomes the following Vandermonde matrix
In the definition ofCs, the sum is over ak, such that the-th Ao AL e A
digit of a is 0, the thez-th digit is some fixed value; # i, j, M= A AT - A
and thej-th digit varies in[0, 7 — 1]. Then one can see that : : :
-1 ~1 -1
R

B, CP;,,C CQ. . .
u C P G C Q) Since Ajs are distinct, we know M’

and hence M is non-singular.  Therefore,

e j € [tm+1,(t+1)m], for somet € [0,r —1] and span{e,, o), €4,(0)Air - - -1 €a(0)A] '} =
j—tm # i. Then the eigenspaces of; are V;, = span{ e, (0), €a,(1): - - - Ca;(r—1) I Since S;
span(P;,), u # t, and V;; = span(Q;). Then it is contains ea,-(o) for all r-ary vector a, we know
clear thatS; = span(P; ) = span({B, : u # t} UCy). Si+SiAi+ -+ SA” 1 _ gl
Also every vector ofB,, u # t and C; is an eigenvector

Case 2i € [rm, (r+1)m ]. Again, we first define some sets

of A;. of vectors to help with our arguments.

o j€[rm+1,(r+1)m|, j—rm # i. The eigenspaces
of A; areV;, = span(P;,), u € [0,r —1]. And S; =

/ o . .
span(P;o) = span{B, : u € [0,7 — 1]} and every vector By = | 2 ¢a:j=1u,0: € [0, —1],z # 10}
in B,,Yu is an eigenvector 01’4]-.
o j—tm=i,t€[l,r]. Then the first eigenspace df; is c = 1
Vjo—span( 0o f {2 Eea.az 0,r—1],z#1,j}.
e j = i In th|s case we want to check (14) in the

subspace property. Suppose the distinct eigenvaluesHsire the sum irB;, has fixed values of; = u anda;, z # i, ,
A; are Ag, Ay, ..., A, 1. Then the eigenvalues foA$ and thei-th digit varies in[0,7 — 1]. The sum inC; has fixed

wiII be A9, AS,...,AS_, for s € [0,r —1]. Notice that values ofa,, z # 1,j, and thei-th andj-th digit both vary in
Si = span(P;) = span{e,, () : Va € Z"} and [0, —1]. Then one can check that

B, C span(P;,),C; C span(Qj).

S
ai(0)Ai e j € tm+1,(t+1)m], t € [0,r—1], andj — tm #
=l i —rm. The eigenspaces o; arespan(P;,), u # t
= ( 706%‘(”) —ea (1) 7 Ca (1)) Ai andspan(Q;). And S; = span(Ql) = span({B), : u #
”_r_l t}uCl). We can see that every vector i), u # t and
= A Ve Se R L C} is an eigenvector ofi;.
Ouzo au) — 17ai(1) r-1%ar=1) e jerm+1,(r+1)m], j;éi The eigenspaces of; are
r—1 Pj,, u € [0,r —1]. And S; = span(Q;) = span{By, :
= Adeg(0) + Y (A~ A%)ea;(u)- u € [0, —1]}. We can see that every vector Bf is an
u=1 eigenvector ofA;.

o j—tm=1i—rm,t e [0,r—1]. Then thet-th eigenspace
Writing the equations for alk € [0, — 1] in a matrix, of A; is span(Q;), which is equal tcS;.



o j=1. Takezz‘:% es,(u) € Si for arbitrarya, then Here all /\ES.) are unknowns in the finite field;. We are
) ) going to show that if we write the determinants of each x
'« A5 — '« A8 submatrix as a polynomial, and take the product of all these
Z €a;(u)Ai = Z u€a;(u) ; e ;
= = polynomials, then it is an nonzero polynomial. Moreover, by
Combinatorial Nullstellensatz [1] we can find assignmerits o
the unknowns over a large enough finite field, such that this

polynomial is not zero. Then we are guaranteed to have all

Written in a matrix form, we have

Eaiﬁ)Ai the x x x submatrices invertible. In [1] it is proved that if the
eﬂf(O)AZ degree of a ponnomiaf(xlgl...,xs) is deg(f) = Xi_qti,
e and the coefficient of [;_; x;' is nonzero, then a finite field
: of sizemax;{t;} is sufficient for an assignment, . .., cs; such
eai(O)Alr.*l that f(cy,...,cs) # 0.
1 1 .. 1 By the symmetry of thé;}‘?, we consider only the degree of
e,. !
/\tz) )‘% T )‘571 e‘;’,(o) A= /\glg. We will find its maximum degree in the polynomial
= A AT A l.(l) . of determinants. This unknown variable only appears in the
: : : : matrix )
.,1 .,1 ',1 €, (r_ Aol
AG AL P Vi a;i(r—1) 1,0
- N A= ,
So similar to Case 1, we knoW; + S;A; +...S;A;~ ON
spans the entire spadé. 1r-1

B wherel is the identity matrix of size™ ! x r"~1, Let B =
Again, this construction can be shortened to an optimal; ' A; ;. Then we know that appears only in the first" !
access code of lengthn [5] and an optimal-update code ofcolumns of B. For the determinant of any x x submatrix
lengthm [3], [10], [16]. of M, only the ones containin@ needs to be considered,
The finite field size of this code can be bounded by theecause we are only interested in the degrea.dfherefore,
following theorem. In the following, we do not assume thahere are(*"1)(2~1) submatrices of size x x that has\ in
the eigenvalue ofi, ; is thes-th power ofA, ;, andA; ; is not  its determinant, and its degreeri$ ! for each submatrix. So
necessarily identity. Hence, we only assume tha}, ..., A,; the total degree oh is

share the same eigenspaces foriall

mel v [(k—1\ [(r—1
Theorem 7 A finite field of sizek"~1y"~1 41 sulffices for the r X—:1 xr—1/\x—=1)"
code to be MDS and optimal repair bandwidth. Here (r + =
1)m. Moreover, we know from the proof of Theorem 6 that

optimal repair bandwidth is achieved for the first systemati
Proof: Let {)\fj.)} be thej-th eigenvalue ofA;;, i € node iff the following matrix is invertible
[k],j € [0,y —1],s € [r]. In order to show that the code

(1) (1)
is MDS, we need to check if alk x x submatrices of the Mo 0 Mya
following matrix are invertible, for alk € [1,7]. : :
A Arp o Agg /\gfg )\gfr)—l
A.2,1 A.Z'Z o A_sz Hence, we need to multiply its determinant to our polynomial
: : : The total degree oh is
Ap A o Ag - m_lz’: (k—l) (r—l)
r
Note that eachA;; can be written as/; 'Ay;V; for some \x—1/\x—1
diagonal matrixA, ;, where the rows ofl; are eigenvectors r=1 1N\ /7 —1
and the diagonal of\, ; are eigenvalues. Sincé; ;,..., A, ; = 141 < N ) ( N >
share the same eigenvectdfs we can muItipIyVlf1 on the x=0
right of thei-th block column, and not change the rank of the I fr—1
above matrix: < 147 xX—:o(k -1 x
V;iAu vz—iAl,z V,:iAl,k = 14
Vi A Vo A e VIOA
M=| 1 21 "2 _ 22 ko 2k Hence the proof is completed. ]

: : : We can see that in the above theorem, for high-rate codes
V{lAr,l V{lAr,z e kalAr,k the field size is expositional in the number of systematicasod



But we believe that there is still a large space to improve thit3] N.B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandtémterfer-
bound. ence alignment in regenerating codes for distributed géoraecessity
and code constructions/EEE Trans. on Information Theory, vol 56,
no. 4, pp. 2134-2158, 2012.
V. CONCLUSIONS [14] C. _Suh and K. Ram(;handran, “Exact-Repair MDS _Code Coctson
In this paper, we presented a family of codes with param- g;"”ngo'”;ergirefzzesﬁ'ﬁ’geggff'f Trans. on Information Theory, vol
eters(n = (r+1)m + rk=(r+1)m,l= 7’m) and _they aré [15] c. Suh and K. Ramchandran, “On the existence of optinatierepair
so far the longest high-rate MDS code with optimal repair. ~MDS codes for distributed storage,” Tech. Rep. arXiv:18663, 2010.
The codes were constructed using eigenspaces of the codiy :"eklﬁlnc}i?\’g ?in\’lvggg’zgff J. Bruck, "MDS array codes with ot
matrices, S_UCh that they_ satisfy the subspace propertg Thiz | Tamo, Z. Wang,’and J. Bruck, “Zigzag codes: MDS arraglas with
property gives more insights on the structure of the codes, optimal rebuilding,” Tech. Rep. arXiv:1112.0371, 2011. . _
and simplifies the proof of optimal repair. [18] I. Tamo, Z. Wang, and J. Bruck, “Access vs. bandW|dth in

. . . codes for storage,” submitted ttSIT, 2012. Available athttp
If we require that the code rate approaches.e., r being // paradise.caltech.edu/etr.html.

a constant andr goes to infinity, then the column length [19] Z. Wang, I. Tamo, and J. Bruck, * On codes for optimal ri&hing

is exponential in the code lengttk. However, if we require iiﬁﬁﬁsuiﬁﬁﬂf?ﬁafﬁgfgnmff %ff”“o" Computing, and Communi-
the code rate to be roughly a constant fraction, ieheing (20} v. wu and A. Dimakis, “Reducing repair traffic for erasuroding-based

a constant anda goes to infinity, then! is polynomial in k. storage via interference alignment,” i8IT, 2009.

; [P ] Y. Wu, R. Dimakis, and K. Ramchandran, “Deterministegenerating
Therefore, dependlng on the appllcatlon, Wwe can see a tifadé%l codes for distributed storage,” idllerton Conference on Control,

between the code rate and the code length. Computing, and Communication, Urbana-Champaign, IL, 2007.
It is still an open problem what is the longest optimal-repai22] L. Xu, V. Bohossian, J. Bruck, and D. Wagner, “Low-densViDS codes
code one can build given the column lengttAlso, the bound and factors of complete graphdEEE Trans. on Information Theory,

.. . . . vol. 45, no. 6, pp. 1817-1826, Sep. 1999.
of the finite field size used for the codes may not be tights] L. xu and J. Bruck, “X-code: MDS array codes with optineaicoding,’
enough. Unlike the constructions in this paper, the fiel@ siz  1EEE Trans. on Information Theory, vol. 45, no. 1, pp. 272-276, 1999.

may be reduced when we assume that the coding matrices do
not have eigenvalues or eigenvectors (are not diagon#izab
These are our future work directions.
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